Competency Based
Nanotechnology Curriculum

Foothill College
Nanotechnology Program
Our Program

• **STEM foundation and goals**
 – Building engineering skills for life

• **Nanotechnology** core

• Disciplines / applications

• **Competency based program design**
 – Survey driven
 – **KSA / SLO alignment**
 – Industry **competencies**
Survey of Nano Industry

- 40 companies
- 10 verticals
- 20,000 total jobs
- 25 to 50% annual growth
- Industry transformation
- Job transformation
 - Skills are changing as fast as industry!
Target Industry Sectors

- Semiconductors
 – nanoelectronics
- Fabrication (Si fabs)
- Surfaces and thin films
- Characterization
- Biotechnology
- MEMS and sensors
- Energy (cleantech)
Careers / Requirements

• 4 yr degree (or more)
 – Science / technology
• Industry experience
• Interdisciplinary skills
 – Problem solving
 – Critical thinking
• Communication
 – Verbal, writing
 – Interdisciplinary
Multidisciplinary Skills

• Foundation knowledge
 – Chemistry
 – Biology
 – Math
 – Physics
 – Engineering

• Specialization in:
 – Biotech, electronics,
 materials, fabrication

It’s all of the foundation subjects, with key competencies
Nanotech Competencies

- Nanofabrication competency
- Materials characterization / modeling
- Surfaces and thin films
- MEMS devices and sensors
- Semiconductors and nanoelectronics
- Nanobiotechnology competency
Nanofabrication

- Silicon fabrication
- Polymer fabrication
- Metals and alloys
- Ceramics and glasses
- Semiconductor theory
- Process competency
- Lab safety
Materials Characterization

- **Analytical / characterization**
 - Surface and image analysis
 - Organic analysis and characterization

- **Modeling**
 - Physical and *molecular modeling*
 - Computer skills and *informatics*

- **Problem solving**
 - Failure analysis, need process knowledge
Surfaces and Thin Films

- Surface *states and processes*
- Surface *chemistry* and derivatization
 - Laboratory work in wet and dry techniques
- Surface *analytical techniques*
- Thin film *applications and design*
- Thin film *deposition techniques*
- Thin film *characterization* techniques
MEMS Devices and Sensors

- Knowledge of MEMS applications
- Knowledge of MEMS *design* and function
- MEMS *design skills* / CAD / fabless IC
- *Sensor* and *biosensor applications*
- Silicon and non-silicon MEMS processing
- *Integration of IT and MEMS*
 - Extending nanotechnology
Nanobiotechnology

- **Cell** and *molecular biology*
- DNA *sequencing* / analysis
- Protein *structure modeling*
- *DNA microarray* / gene expression and SNP analysis (*bioinformatics skills*)
- DNA microarray *design* and *fabrication*
- *Self-assembly*
 - Proteins and DNA *templating* / *modeling*
Myth of Technicians

• There are technicians…
• But…
• Half have BS degrees
• Many are scientists / engineers
• Only 25% of most ‘nano companies’
• Need a strong STEM foundation
 – And a lot of experience!
Nanotechnicians

• 2005 FHDA nanosurvey results
• Nanotechnicians are valuable if they:
 – Understand *nanostructured materials*
 – Are able to *run and optimize a process*
 – Can *tune instruments and equipment*
• Many assist scientists and engineers
 – Often work in *R&D and manufacturing*
 – Often work as *junior scientists / engineers*
Aligning Competencies & KSA Learning Outcomes

1. Map competencies into an ontology
2. Organize topics / learning outcomes
3. Create course objects with key SLOs
4. Certificate is based on competencies
5. Organized by clusters of courses
6. Use scenario based learning models
Mapping Work Skills to KSA Learning Outcomes

<table>
<thead>
<tr>
<th>Work</th>
<th>Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 (K&S)</td>
<td>Learning Object 1</td>
</tr>
<tr>
<td>Task 2 (K&S)</td>
<td>Knowledge 1</td>
</tr>
<tr>
<td>Task 3 (K&S)</td>
<td>Skill 1</td>
</tr>
<tr>
<td>Knowledge 1</td>
<td>Learning Object 2</td>
</tr>
<tr>
<td>Knowledge 2</td>
<td>Knowledge 2</td>
</tr>
<tr>
<td>Knowledge 3</td>
<td>Skill 2</td>
</tr>
<tr>
<td>Skill 1</td>
<td>Learning Object 3</td>
</tr>
<tr>
<td>Skill 2</td>
<td>Knowledge 3</td>
</tr>
<tr>
<td>Skill 3</td>
<td>Skill 3</td>
</tr>
</tbody>
</table>

NSF Proposal Oct / 2004
Science (Domain know-how)

Competencies

Engineering (Process know-how)

Aggregate Technology

Practice

Multidisciplinary Knowledge

Individual abilities (know-how)

Interdisciplinary Skills

Concept by FHDA / Taxonomize
STEM Foundation

• Science – *why things work*
• Technology – *tools for the future*
• Engineering – *how things work*
• Mathematics – *reasoning / analysis*
• Building a *pipeline* for our partners
• Building a *sound foundation* for life

Technicians need lifelong learning skills!
Physics, Biology, and Chemistry Meet in Nanotechnology

Source: VDI-Technology Center, Future Technologies Division
Multi-tiered Curriculum

<table>
<thead>
<tr>
<th>Internship / project based learning / thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
</tr>
</tbody>
</table>

Nanotechnology Layer

Foundation subjects in science / engineering
FHDA Nano Certificate

- Survey course
- Materials science
- Characterization
- Surfaces / Thin Films
- Nanoelectronics
- Fabrication (lec)
- Fabrication (lab)
- MEMS / Sensors
- Nanobiotechnology
- Internship / project

Ten courses of which 3-4 can be *competency clustered*

Certificate will be topic mapped for coordination with CSU

‘Intro to Materials Science’ may be a corequisite
Innovation Value Chain

- **Science**
- **Engineering**
- **Technology**
- **Manufacturing**

- From R&D to final assembly
 - Convergence of **Science**, **Engineering**, **Technology**, and **Manufacturing** *unifies* the innovation value chain
 - *Maintains regional ownership of IP & innovation*
SETM Innovation

- **Science** - discovery
- **Engineering** - development
- **Technology** – process and products
- **Manufacturing** – capturing value
- **Innovation value chain**
 - *SETM in nanotechnology is critical*
 - *SET-M may not have long-lived value*
SETM Model of Innovation

The Innovation Value Chain is a Dynamic Process
SETM Based Curriculum

- **Science** - knowledge
- **Engineering** - skills
- **Technology** - competency
- **Manufacturing** – practice
- **Scenario based** – around a challenge
 - Energy, clean water, food, health / medicine, advanced materials / transportation / space

Nanomanufacturing – *we need to make things with high $ value!*

CA Manufacturing Revisited

- California *industries / competencies*
- *MEMS* and sensor technology
- *Nanobio* / molecular manufacturing
- *Microarray platform technologies*
- *Thin films / surface engineering*
- Energy / *clean technology* (3×10^{12})

There is no reason to be 2nd in engineering / manufacturing!
Competent Partners

- SJSU / UCSC
- Stanford University
- SRI
- NASA Ames
- IEEE
- Industry partners
 - Modeling and characterization

The key to your program is building a competent team!
Nano Program Summary

- **Survey driven** process
- **Competency based cores**
- Align nano course **SLOs**
- Program has 5 or 6 ‘**cores**’
- Based on **STEM**
- Supporting **SETM**

Nano technicians need STEM skills for life!