Linear fit via least-squares (summary)

To fit a straight line \(y = mx + b \) to \(N \) data points \((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\):

\[
m = \frac{N \left(\sum_i x_i y_i \right) - \left(\sum_i x_i \right) \left(\sum_i y_i \right)}{\Delta}
\]
\[
b = \frac{\left(\sum_i y_i \right) \left(\sum_i x_i^2 \right) - \left(\sum_i x_i y_i \right) \left(\sum_i x_i \right)}{\Delta}
\]

where

\[
\Delta = N \left(\sum_i x_i^2 \right) - \left(\sum_i x_i \right)^2
\]

To calculate uncertainties in the fit,

\[
\delta m = \sqrt{\frac{\sigma^2 N}{\Delta}}
\]
\[
\delta b = \sqrt{\frac{\sigma^2 \left(\sum_i x_i^2 \right)}{\Delta}}
\]

where

\[
\sigma^2 = \frac{1}{N - 2} \left(\sum_i (mx_i + b - y_i)^2 \right)
\]

\(\sigma^2 \) can also be calculated via

\[
\sigma^2 = \frac{1}{N - 2} \left(\sum_i y_i^2 - m \left(\sum_i x_i y_i \right) - b \left(\sum_i y_i \right) \right)
\]

as long as exact values are used for all quantities — the round-off errors in this formula are huge.