Endocrine Functions

- Maintains homeostasis by producing and releasing chemicals called hormones
- Controls long-term processes
 - examples:
 - Growth & development
 - Reproduction
 - Metabolism

Types of Glands

- Exocrine Glands
 - Formed from epithelial tissue.
 - Release their products at the body’s surface or into body cavities through ducts.
- Endocrine Glands
 - Formed from epithelial tissue.
 - Release their products - hormones - into the blood or lymph - ductless glands
What are Hormones?

- Chemical messengers secreted by endocrine glands.
- Responsible for specific regulatory effects on certain parts or organs.

Mechanisms of Hormone Action 1

- Hormones affect only certain target tissue cells or organs (specificity)
 - Note: blood-borne hormones circulate to all body organs
- Hormones interact with specific receptors in specific target cells
Mechanisms of Hormone Action 2

- **Receptor Responses:**
 - Stimulate synthesis of proteins or certain regulatory molecules in cell
 - Activate or inactivate enzymes
 - Stimulate mitosis
- **Increase or decrease the rate of normal cell function**
 - *NOT new function*

Control of Hormone Release

- **Negative feedback mechanism**
 1. Hormone secretion triggered by some stimulus.
 2. Rising hormone levels inhibit further hormone release.
 3. Hormones vary only within a very narrow range.
Endocrine Gland Stimuli

1. Hormonal stimulus
 - Endocrine gland prodded into action by other hormones
2. Humoral stimulus
 - Changing blood levels of certain ions and nutrients may stimulate hormone release
3. Neural stimulus
 - Nerve fibers stimulate hormone release

Major Endocrine Organs

- Hypothalamus
- Pituitary Gland
- Thyroid Gland
- Parathyroid Glands
- Adrenal Glands
- Pancreatic islets
- Pineal Gland
- Thymus
- Ovaries
- Testes
Posterior Pituitary Hormones

- Oxytocin
 - Acts on
 - mammary glands
 - uterus
- ADH - antidiuretic hormone
 - Acts on kidney tubules
Anterior & Posterior Pituitary Gland

Anterior Pituitary Hormones

- TSH - thyroid stimulating hormone
- FSH & LH - follicle stimulating hormone & luteinizing hormone
- ACTH - adrenocorticotropic hormone
- MSH - melanocyte stimulating hormone
- PRL - prolactin stimulating hormone
- GH - growth hormone
FSH and LH

- **Females**
 - FSH – stimulates follicle development
 - LH – triggers ovulation of egg

- **Males**
 - FSH – stimulates sperm development
 - LH – stimulates testosterone production

Male Gonads

- **Testes**
- Suspended in scrotal sac
- Produces:
 - Sperm
 - Androgens
 - testosterone
Female Gonads

- Ovaries
- Produces:
 - Eggs
 - Steroid hormones
 - estrogens
 - progesterone

Adrenal Medulla

- Stimulated by Sympathetic NS
 - “Fight or flight”

- Secretes two (2) hormones (catecholamines)
 - Epinephrine
 - Norepinephrine
Adrenal Cortex

- Secretes 3 different corticosteroids
 1. Mineralocorticoids
 - Increases salt & water levels in blood
 - aldosterone
 2. Glucocorticoids
 - Increases blood glucose levels
 - cortisol
 3. Androgens
 - males & females

Action of ACTH

ACTH stimulates the adrenal cortex.

Action of PRL

PRL promotes lactation.
Slide 28

![Image of a goat with text: Prolactin (plus several other hormones)]

Slide 29

Action of MSH

- melanocyte stimulating hormone (MSH)

- MSH stimulates melanocytes.

Slide 30

Action of GH

- growth hormone (GH)

- GH promotes bone and muscle growth.
Growth Hormone

- Youth - promotes bone and muscle growth
 - final body size
- Adulthood – promotes repair
- Hypersecretion
 - youth - gigantism
 - adult - acromegaly
- Hyposecretion

Gigantism

- Hypersecretion of growth hormone in youth
- excessive proportional growth

Acromegaly

- Hypersecretion of growth hormone in adults
- Disproportional enlargement of
 - jaw
 - hands
 - tongue
GROWTH HORMONE TREATMENT OF TIBIAL FRACTURES: A RANDOMISED, DOUBLE-BLIND, PLACEBO-CONTROLLED TRIAL

Adverse events
- consistent with those usually seen in tibial fractures (infections) or during hGH treatment in adults (peripheral edema, arthralgia).

CONCLUSION:
- In closed tibial fractures separately, hGH treatment accelerated healing
- significantly, which may be of benefit in people with closed fractures.
- No new hGH safety issues were identified.

Aging Baby Boomers turn to hormone

Some doctors concerned about growing 'off-label' use of drug

Pancreas

- location
- mixed gland
 - endocrine
 - insulin & glucagon
 - exocrine
 - digestive enzymes
- pancreatic islets
 - beta cells
 - alpha cells
Thyroid Gland

- Location
- Most cells of body have receptors for thyroid H
- Produces:
 - thyroid hormone
 - increases rate of O2 use
 - Basal metabolic rate (BMR)
 - increases use of glucose
 - for ATP production
 - Calcitonin
 - calcium homeostasis
 - increases osteoblast activity
Parathyroid Gland

- **Location & Number**
- **Produces parathyroid hormone**
 - calcium homeostasis
 - increases blood calcium levels
 - increases osteoclast activity

Pineal Body

- **Location:** in epithalamus of diencephalon
- **Functions:** (some uncertainty)
 - biological clock
 - inhibits sexual maturation in childhood
 - inhibits secretion of FSH & LH
Thymus Gland

- **Location:** posterior to sternum
- **Size relative to age**
- **Functions:**
 - promotes immune system development and function
 - T-lymphocytes maturation

Effects of Anabolic Steroids

- balding in men and women
- hair on face and chest in women
- deepening of voice in women
-roid mania—delusions and hallucinations; depression upon withdrawal
- severe acne
- breast enlargement in men and breast reduction in women
- kidney disease and retention of fluids, called “steroid diet”
- reduced testicular size, low sperm count, and impotency
- high blood cholesterol and atherosclerosis; high blood pressure and damage to heart
- liver dysfunction and cancer
- in women, increased size of ovaries; cessation of ovulation and menstruation
- stunted growth in youngsters by prematurely halting lengthening of bones
Body Growth

The following hormones stimulate body growth and development of nervous tissue:

- Growth hormone
- Insulin
- Thyroid hormones

Aging and Endocrine Function

Pituitary gland
- decrease GH → muscle atrophy

Thyroid gland
- decrease thyroxin → decrease metabolism
 → increase fat deposition

Pancreas
- decrease insulin → poorer control of glucose levels

The End