Endocrine Functions

- Maintains homeostasis by producing and releasing chemicals called hormones
- Controls long-term processes
 - examples:
 - Growth & development
 - Reproduction
 - Metabolism

Types of Glands

- Exocrine Glands
 - Formed from epithelial tissue.
 - Release their products at the body's surface or into body cavities through ducts.
- Endocrine Glands
 - Formed from epithelial tissue.
 - Release their products - hormones - into the blood or lymph - ductless glands
What are Hormones?

- Chemical messengers secreted by endocrine glands.
- Responsible for specific regulatory effects on certain parts or organs.

Mechanisms of Hormone Action 1

- Hormones affect only certain target tissue cells or organs (specificity)
 - Note: blood-borne hormones circulate to all body organs
- Hormones interact with specific receptors in specific target cells
Mechanisms of Hormone Action 2

- **Receptor Responses:**
 - Stimulate synthesis of proteins or certain regulatory molecules in cell
 - Activate or inactivate enzymes
 - Stimulate mitosis
- **Increase or decrease the rate of normal cell function**
 - **NOT new function**

Control of Hormone Release

- **Negative feedback mechanism**
 1. Hormone secretion triggered by some stimulus.
 2. Rising hormone levels inhibit further hormone release.
 3. Hormones vary only within a very narrow range.

Endocrine Gland Stimuli

1. **Hormonal stimulus**
 - Endocrine gland prodded into action by other hormones
2. **Humoral stimulus**
 - Changing blood levels of certain ions and nutrients may stimulate hormone release
3. **Neural stimulus**
 - Nerve fibers stimulate hormone release
Major Endocrine Organs

- Hypothalamus
- Pituitary Gland
- Thyroid Gland
- Parathyroid Glands
- Adrenal Glands
- Pancreatic Islets
- Pineal Gland
- Thymus
- Ovaries
- Testes

Anterior & Posterior Pituitary Gland
Slide 13

Controlling Hormone Levels

- Hypothalamus hormones stimulate Anterior pituitary
- Anterior pituitary stimulates Thyroid, Adrenal cortex, Gonads

Slide 14

Hypothalamus

- When appropriate, ADH and oxytocin are produced in nerve cell bodies in the hypothalamus.
- These hormones move down axons to axon endings.
- ADH acts on the kidney tubules, and oxytocin acts on the uterus and the mammary glands.

Slide 15

Posterior Pituitary Hormones

- **Oxytocin**
 - Acts on mammary glands, uterus
- **ADH - antidiuretic hormone**
 - Acts on kidney tubules
Anterior Pituitary Hormones

- TSH - thyroid stimulating hormone
- FSH & LH - follicle stimulating hormone & luteinizing hormone
- ACTH - adrenocorticotropic hormone
- MSH - melanocyte stimulating hormone
- PRL - prolactin stimulating hormone
- GH - growth hormone
FSH and LH

- **Females**
 - FSH – stimulates follicle development
 - LH – triggers ovulation of egg

- **Males**
 - FSH – stimulates sperm development
 - LH – stimulates testosterone production

Male Gonads

- Testes
- Suspended in scrotal sac
- Produces:
 - Sperm
 - Androgens
 - testosterone

Female Gonads

- Ovaries
- Produces:
 - Eggs
 - Steroid hormones
 - estrogens
 - progesterone
Adrenal Medulla

- Stimulated by Sympathetic NS
 - “fight or flight”

- Secretes two (2) hormones (catecholamines)
 - Epinephrine
 - Norepinephrine

Action of ACTH

ACTH stimulates the adrenal cortex.
Adrenal Cortex

- **Secretes 3 different corticosteroids**
 1. Mineralocorticoids
 - Increases salt & water levels in blood
 - aldosterone
 2. Glucocorticoids
 - Increases blood glucose levels
 - cortisol
 3. Androgens
 - males & females

Action of PRL

PRL promotes lactation.

Fielder (plus several other hormones)
Aging Baby Boomers turn to hormone

Some doctors concerned about growing 'off-label' use of drug

Sabin Russell, Chronicle Staff Writer
Monday, November 17, 2003
Growth Hormone

- Youth - promotes bone and muscle growth
 - final body size
- Adulthood – promotes repair
- Hypersecretion
 - youth - gigantism
 - adult - acromegaly
- Hypossecretion

Pancreas

- location
- mixed gland
 - endocrine
 - insulin & glucagon
 - exocrine
 - digestive enzymes
- pancreatic islets
 - beta cells
 - alpha cells

Homeostatic System (Insulin and Glucagon)
Thyroid Gland

- Location
- Most cells of body have receptors for thyroid hormone
- Produces:
 - thyroid hormone
 - increases rate of O₂ use
 - Basal metabolic rate (BMR)
 - increases use of glucose
 - for ATP production
 - Calcitonin
 - calcium homeostasis
 - increases osteoblast activity

Hyperthyroidism

- Graves’ Disease
- Low iodine intake
Parathyroid Gland

- Location & Number
- Produces parathyroid hormone
 - calcium homeostasis
 - increases blood calcium levels
 - increases osteoclast activity

Regulation of Blood Calcium

- high blood calcium level
- thyroid calcitonin
- buildup of bone by osteoblasts
- blood Ca++ level decreases
- low blood calcium level
- parathyroid hormone
- bone contains Ca++
- breakdown of bone by osteoclasts
- blood Ca++ level increases
- normal blood calcium level

Pineal Body

- Location: in epithalamus of diencephalon
- Functions: (some uncertainty)
 - biological clock
 - inhibits sexual maturation in childhood
 - inhibits secretion of FSH & LH
Thymus Gland

- Location: posterior to sternum
- Size relative to age
- Functions:
 - promotes immune system development and function
 - T-lymphocytes maturation

Potential Negative Side Effects of Anabolic Steroids

Effects of Anabolic Steroids:
- balding in men and women;
- hair on face and chest in women
- deepening of voice in women
- breast enlargement in men and breast reduction in women
- kidney disease and retention of fluids, called "steroid bloat"
- reduced testicular size, low sperm count, and impotency
- high blood cholesterol and atherosclerosis; high blood pressure and damage to heart
- liver dysfunction and cancer
- stunted growth in youngsters by prematurely halting lengthening of bones
Barry Bonds 1987-2000

1987
206lbs

1998
210lbs

2000
210lbs 49HR

1999
210lbs

Barry Bonds 2001-03

2001
73HR
228lbs

2002
228lbs

2003
228lbs

Body Growth

The following hormones stimulate body growth and development of nervous tissue:

- Growth hormone
- Insulin
- Thyroid hormones
Aging and Endocrine Function

Pituitary gland
- decrease GH → muscle atrophy

Thyroid gland
- decrease thyroxin → decrease metabolism
 → increase fat deposition

Pancreas
- decrease insulin → poorer control of glucose levels

The End