Chemistry of Life

Matter

- Matter
 - Has weight and occupies space
 - Usually can feel, taste or see it
- Three states of matter
 1. Solid
 2. Liquid
 3. Gas

Composition of Matter

- Element
 - Building block of matter
- Most common elements
 - C - carbon
 - H - hydrogen
 - O - oxygen
 - N - nitrogen
Composition of Matter

- Atom
 - Smallest part of an element

The Chemical Composition of Living Matter

1. Organic compounds
 - Compounds containing carbon
 - Examples
 - Carbohydrates, lipids, proteins and nucleic acids

2. Inorganic compounds
 - Compounds lacking carbon. Smaller, simpler
 - Examples
 - Water, salts, acids, and bases
Inorganic Compounds

Salts
- Compounds that separate (dissociate) into charged particles (ions) when dissolved in water.
- Examples
 - Calcium, phosphorus, sodium, potassium, iron

Inorganic Compounds

Acid
A substance that can release hydrogen ions (H⁺)

Example

\[
\text{HCl} \rightarrow \text{H}^+ + \text{Cl}^- \\
\text{(hydrochloric acid)} \quad \text{(hydrogen ion)} \quad \text{(anion)}
\]
Inorganic Compounds

Base

A substance that can accept hydrogen ions

Example

\[\text{NaOH} \rightarrow \text{Na}^+ + \text{OH}^- \]

(sodium hydroxide) (cation) (hydroxyl ion)

Dissociation — Addition of NaOH

Slide 12

Acid-Base Concentrations

Measured by:

pH

A measure of the concentration of hydrogen ions.
Slide 13

Dissociation of Water Molecules

Slide 14

pH Scale

Water dissociates:

\[H_2O \rightarrow H^+ + OH^- \]

- Water
- Hydrogen ion
- Hydroxyl ion

7 = neutral pH \((H^+ = OH^-) \) pure water

Range of pH scale: 0 - 14

Slide 15

pH Scale

Increasing concentration of hydrogen ions \([H^+]\)

Increasing concentration of hydroxyl ions \([OH^-]\)
Regulating Acid-Base Concentrations

Buffers
A substance(s) that help stabilize the pH of a solution.

Example
Maintaining blood pH between 7.35 - 7.45

Organic Compounds

1. Carbohydrates
 - Sugars and starches
2. Lipids
 - Neutral fats, phospholipids and steroids
3. Proteins
4. Nucleic Acids
 - DNA and RNA
Carbohydrates

- **Monosaccharides**
 - Structural unit or basic building block
 - Simple sugars
 - Examples: glucose, fructose, deoxyribose

- **Disaccharides**
 - Double sugars
 - Examples: sucrose, maltose, lactose

- **Polysaccharides**
 - Long, branching chains of simple sugars
 - Examples: starch and glycogen

Glucose Structure

\[C_6H_{12}O_6 \]

Condensation Synthesis and Hydrolysis of Maltose

Condensation synthesis

\[\text{glucose} \quad \text{glucose} \rightarrow \text{maltose} \]

Hydrolysis

\[\text{maltose} + \text{H}_2\text{O} \rightarrow \text{glucose} + \text{glucose} \]
Lipids

1. **Neutral fats (triglycerides)**
 - Building blocks: fatty acids and glycerol
 - Found in fat deposits (skin and around organs)
 - Protects and insulates body organs
 - Major source of stored energy in body

2. **Phospholipids**
 - Found in cell membranes

3. **Steroids**
 - Cholesterol, vitamin D, sex hormones
Proteins

- Building blocks: amino acids
- Amino acids join together in chains - form large, complex molecules
- Sequence of amino acids in chain determines the structure and function of the protein
- Examples: enzymes, antibodies, hormones
Synthesis and Hydrolysis of a Peptide (Basic Equation)

Condensation synthesis

amino acid + amino acid \rightarrow dipeptide + water

Hydrolysis

Primary Structure of Protein

Secondary Structure of Protein

hydrogen bond
Enzymes

- Proteins that increase the rate of a chemical reaction (catalyze) without becoming part of the product or being changed itself.
- Each enzyme controls one specific chemical reaction.
- Recognized by suffix -ase
Nucleic Acids

- Function: making protein
- Building blocks: nucleotides
- Major kinds
 - DNA (deoxyribonucleic acid)
 - Double stranded - spiral staircase-like structure
 - Makes exact copies of itself
 - Provides instructions for making protein
 - RNA (ribonucleic acid)
 - Single strand
 - Carries out instructions from DNA to make protein

Nucleotide with Purine Base

Nucleotide with Pyrimidine Base
Adenosine Triphosphate (ATP)

- A modified nucleotide
- Function:
 - provides chemical energy used by all body cells.
- Energy released from ATP
 - Used to transport certain molecules across cell membranes
 - Causes proteins in muscle cells to shorten
 - Used to drive energy-absorbing reactions
The End