City College of San Francisco
Chinatown/North Beach Campus

DRAFT ENVIRONMENTAL IMPACT REPORT

SCH No. 98031039

May 16, 2007

Draft EIR Public Review Period:

San Francisco Community College District

Prepared by:
EIP Associates, a Division of PBS&J
City College of San Francisco
Chinatown/North Beach Campus

Draft Environmental Impact Report

SCH No. 98031039
May 16, 2007

Draft EIR Public Review Period:

San Francisco Community College District

Prepared by:
EIP Associates, a Division of PBS&J
353 Sacramento Street, Suite 1000
San Francisco, CA 94111
Draft Environmental Impact Report
City College of San Francisco
Chinatown/North Beach Campus

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Chinatown/North Beach Campus Planning</td>
<td>1</td>
</tr>
<tr>
<td>B. Review Process</td>
<td>3</td>
</tr>
<tr>
<td>I. SUMMARY</td>
<td>I-1</td>
</tr>
<tr>
<td>A. Project Description</td>
<td>I-1</td>
</tr>
<tr>
<td>B. Main Environmental Effects</td>
<td>I-3</td>
</tr>
<tr>
<td>C. Alternatives</td>
<td>I-22</td>
</tr>
<tr>
<td>D. Areas of Controversy</td>
<td>I-24</td>
</tr>
<tr>
<td>II. PROJECT DESCRIPTION</td>
<td>II-1</td>
</tr>
<tr>
<td>A. Project Objectives</td>
<td>II-1</td>
</tr>
<tr>
<td>B. Project Location</td>
<td>II-2</td>
</tr>
<tr>
<td>C. Project Characteristics</td>
<td>II-6</td>
</tr>
<tr>
<td>D. Project Schedule</td>
<td>II-9</td>
</tr>
<tr>
<td>E. Project Approval Requirements</td>
<td>II-15</td>
</tr>
<tr>
<td>III. ENVIRONMENTAL SETTING IMPACTS, AND MITIGATION</td>
<td>III.A-1</td>
</tr>
<tr>
<td>A. Land Use and Planning</td>
<td>III.A-1</td>
</tr>
<tr>
<td>B. Visual Quality</td>
<td>III.B-1</td>
</tr>
<tr>
<td>C. Historic Resources</td>
<td>III.C-1</td>
</tr>
<tr>
<td>D. Transportation</td>
<td>III.D-1</td>
</tr>
<tr>
<td>E. Geology and Soils</td>
<td>III.E-1</td>
</tr>
<tr>
<td>F. Hazards and Hazardous Materials</td>
<td>III.F-1</td>
</tr>
<tr>
<td>G. Shadows</td>
<td>III.G-1</td>
</tr>
<tr>
<td>H. Wind</td>
<td>III.H-1</td>
</tr>
<tr>
<td>I. Air Quality</td>
<td>III.I-1</td>
</tr>
<tr>
<td>J. Noise</td>
<td>III.J-1</td>
</tr>
<tr>
<td>K. Public Services</td>
<td>III.K-1</td>
</tr>
<tr>
<td>L. Utilities</td>
<td>III.L-1</td>
</tr>
</tbody>
</table>
IV. OTHER CEQA CONSIDERATIONS .. IV-1
A. Impacts Found Not to be Significant .. IV-1
B. Significant Environmental Effects that Cannot be Avoided if the Proposed Project is Implemented ... IV-3
C. Growth Inducement .. IV-4

V. ALTERNATIVES ... V-1
A. Previously Explored Alternatives ... V-1
B. Project Alternatives
 i. No Project Alternative .. V-4
 ii. Alternative A ... V-5
 iii. Alternative B ... V-8
 iv. Alternative C ... V-9
 v. Alternative D ... V-11
 vi. Alternative E ... V-12
C. Environmentally Superior Alternative .. V-15

VI. REPORT PREPARERS AND PERSONS CONSULTED VI-1

APPENDICES
A. Notice of Preparation
B. Geology Glossary

List of Figures
1. Project Location ... II-3
2. Site Plan ... II-4
3. Chinatown/North Beach Campus Leased Sites ... II-5
4. West Elevation .. II-11
5. Basement Level .. II-12
6. Second Floor Plan ... II-13
7. Fifth Floor Plan .. II-14
8. Building Heights in Project Vicinity .. III.A-4
9. Zoning/Height and Bulk Districts ... III.A-7
10. Viewpoint Locations ... III.B-4
11. View from Washington Street at Columbus Avenue............................. III.B-5
12. View Northeast from Portsmouth Square ... III.B-6
13. View North from Kearny Street ... III.B-7
14. View East from Washington Street ... III.B-8
15. View from Telegraph Hill .. III.B-9
16. View Towards Project Site from Columbus Avenue.......................... III.B-17
Table of Contents

17. View Towards Project Site from Jackson Street Between Montgomery Street and Sansome Street .. III.B-18
18. Project Study Boundary ... III.D-2
19. Existing Off-Street Parking Locations .. III.D-9
20. Proposed Project Year-Round Shadow Trace ... III.G-3
21. Project Shadow Pattern on December 21 (10 a.m., Noon, 3 p.m. PST)III.G-4
22. Project Shadow Pattern on March 21 (10 a.m., Noon, 3 p.m. PST)III.G-5
23. Project Shadow Pattern on June 21 (10 a.m., Noon, 3 p.m. PST)III.G-6
24. Project Shadow Pattern on September 21 (10 a.m., Noon, 3 p.m. PST)III.G-7
25. Project Shadow - June 21st 6:45 a.m. PDT ..III.G-8
27 Wind Measurement Locations .. III.H-4

List of Tables

1. Project Characteristics ...II-10
3. MUNI Bus Routes in Project Vicinity .. III.D-6
4. Existing Weekday Off-Street Parking Supply and Occupancy ConditionsIII.D-8
5. Project Trip Generation ..III.D-14
6. Project Person-Trips ...III.D-14
7. Trip Origin by Locations ...III.D-16
8. Trip Destination by Locations ..III.D-16
9. Student and Employee/Faculty Travel Modes ...III.D-17
10. PM Peak Hour Person-Trips by Mode ..III.D-17
11. Vehicle-Trip Generation ..IIID.18
12. PM Peak-Hour Intersection Level of Service: Existing and Existing Plus Project ...III.D-19
13. Estimated Project Parking Demand ...III.D-20
14. MUNI Ridership Estimates ..III.D-23
15. MUNI Screenline Analysis - Existing Plus Project, PM Peak Hour Conditions III.D-25
16. MUNI Screenline Analyses - Future Cumulative PM Peak Hour ConditionsIII.D-26
17. Intersection Level of Service: Existing, Existing Plus Project, and Future Cumulative...III.D-30
18. Wind Comfort Analysis..III.H-5
19. Wind Hazard Criterion ...III.H-6
20. 2005 Estimated Average Daily Emissions ...III.I-7
21. Representative Environmental Sound Levels ..III.J-2
22. Factors that Affect Individual Judgment of a Sound’s “Noisiness”III.J-3
25. Other Alternative Sites Considered in 1998 EIRV-3
INTRODUCTION

A. CHINATOWN/NORTH BEACH CAMPUS PLANNING

The San Francisco Community College District (District) established a Chinatown/North Beach Campus in 1977. The current Chinatown/North Beach Campus main site is at 940 Filbert Street, which includes instructional and administrative operations. Currently, the Chinatown/North Beach Campus occupies eight (8) leased sites in the Chinatown, North Beach, and the Marina neighborhoods. More than 30 sites have been leased and vacated since 1977. The 940 Filbert Street structure, leased from the San Francisco Unified School District, is an un-reinforced masonry building, formerly an elementary school. The building is not handicapped accessible and does not meet current structural or seismic codes. Planning for a permanent campus in the Chinatown/North Beach area formally began in 1977.

The District’s educational goals include three priorities: (1) maintain open access to all adults who can benefit from a post-secondary education; (2) maintain quality educational programs designed to meet the needs of the students; and (3) make continuous efforts to meet the special educational needs of the immigrant population who reside or work in San Francisco. To meet these goals, the District has to rehabilitate and restore its older facilities and construct new facilities where appropriate and necessary. The District’s Construction Plan (Plan) describes the services of the District; its needs for meeting future goals is updated every five years.

The construction of a new Chinatown/North Beach Campus was first included in the Plan in 1997. The Plan states that the current facilities, which are housed in a leased elementary school and other leased buildings, are sub-standard. Therefore, the District found that a new facility consolidating course offerings was necessary to support the District’s educational goals for the Chinatown/North Beach area. District staff reviewed available sites for lease or purchase to implement the District’s objective of building a Chinatown/North Beach Campus.

After a search process lasting several years, the District entered into a purchase agreement in May 1997 for a site at the northwest corner of Columbus Avenue and Washington Street (the Columbo Site). A Needs Assessment Study and Schematic Building Program for the
Chinatown/North Beach Campus was prepared in June 1997, which identified program needs of 98,000 assignable square feet (asf). In December 1997, the District entered into an agreement to purchase the parcel adjacent to the Columbo Site on Columbus Avenue. In 1998, the District proposed a Chinatown/North Beach Campus on the purchased sites.

PREVIOUS ENVIRONMENTAL REVIEW

The District published a Draft Environmental Impact Report on April 23, 1998 (1998 EIR) for a site consisting of three lots on the block bounded by Washington Street, Columbus Avenue, Jackson Street, and Kearny Street (Block 195, Lots 4, 5, and 12) for the Chinatown/North Beach Campus. The 1998 project would require demolition of the two-story mixed use (office and retail) Columbo Building at 1-9, 11-19 and 21 Columbus Avenue (Lot 4), and the occupied residential building (Lot 12) at 45-55 Columbus Avenue (the Fong Building). The Fong Building is separated from the other building by Ils Lane. Lot 5 is vacant. As described in the 1998 EIR, the proposed City College building on the Columbo Site would have been eight stories and 119 feet high, and the building on the Fong Site would have been seven stories and 94 feet high. These buildings would have contained a total of 101,000 assignable square feet (asf) or 158,000 gross square feet (gsf). These buildings would be connected by walkways at levels four through seven above Ils Lane and would share two below-ground levels of parking.

The primary issues addressed in the 1998 EIR were Land Use and Zoning, Aesthetics, Historical and Architectural Resources, Transportation, Geology and Soils, and Hazards and Hazardous Materials. The Initial Study prepared for the 1998 EIR determined that the 1998 project would result in no impact, less-than-significant impacts, or less-than-significant impacts with mitigation in the following areas: Agricultural Resources, Biological Resources, Energy, Hydrology, Mineral Resources, Noise, Population and Housing, Public Services and Recreation, and Utilities and Service Systems; these areas were found to not require further analysis in the 1998 EIR.

1 Assignable Square Footage (asf) is area that can be assigned to a specific program use. It does not include circulation space, vertical shafts, or non-programmed support spaces (such as bathrooms, and mechanical or utility rooms), and is measured to the inside face of walls of a room or area.
The 1998 EIR concluded that the 1998 project would result in a significant and unavoidable impact related to architectural resources in that demolition of the Colombo Building would result in the loss of an historic structure, a significant adverse impact that could not be mitigated to a less-than-significant level. In addition, the 1998 project would have resulted in significant and unavoidable impacts to housing due to the demolition of an occupied residential building (the Fong Building). Other effects related to Land Use, Aesthetics, Archeology and Cultural Resources, Transportation, Geology and Soils, and Hazards and Hazardous Materials were not considered significant or could be mitigated to a less-than-significant level.\(^2\)

The 1998 EIR was certified by the District’s Board of Trustees (Board), but the project was not implemented. In 1999, the District considered a revised design that would preserve elements of the Colombo Building and issued an Addendum to the 1998 EIR in August 1999. The Addendum found that the revised design would reduce significant adverse effects on historic resources to a less-than-significant level and would not alter the other conclusions in the 1998 EIR. Therefore, no further environmental review was required under CEQA Guidelines Section 15164, and the revised project was approved by the Board. This revised 1998 project was abandoned because it was cost prohibitive.

In 2005, the District purchased the public surface parking lot at the northeast corner of Washington Street and Kearny Street (Lots 9 and 10 of Assessor’s Block 195 [Project Site]) and sold the Fong Site. The District has retained the vacant lot adjacent to the Columbo Building on Washington Street (Lot 5) and has placed the Columbo Site for sale. The District proposes to build a 16-story building for the Chinatown/North Beach Campus on the surface parking lot at the northeast corner of Washington and Kearny Street, located on the same block as the 1998 project. The District has no plans to develop the vacant Lot 5, one of the lots included in the 1998 project.

B. REVIEW PROCESS

Under the California Environmental Quality Act of 1970 (CEQA), the agency that carries out a project is the Lead Agency even if the project is located within the jurisdiction of another public agency *(CEQA Guidelines, Section 15051[a])* . The District, as the Lead Agency for the

project evaluated in this Environmental Impact Report (EIR), is responsible for preparing this EIR and has the primary responsibility for approving or carrying out the project.

Because development on the Project Site was not analyzed in the 1998 EIR as an alternative, the District determined that a new EIR for the Chinatown/North Beach Campus was required under CEQA Guidelines Section 15162.

CEQA requires agencies to prepare EIRs “as early as feasible in the planning process to enable environmental considerations to influence project program and design and yet late enough to provide meaningful information for environmental assessment” (CEQA Guidelines, Section 15004[b]). The District published a Notice of Preparation on October 6, 2006 (see Appendix A).

This EIR analyzes the construction of the Project, a 16-story building with a mechanical penthouse and one basement level on the Project Site. While the District would continue to own Lot 5, it is not part of the Project Site. However, development of Lot 5 is analyzed in the EIR as part of Project alternatives and as part of cumulative conditions for environmental topics, including, among other topics, visual quality and wind.

Development on Lot 5 by the District would be limited by the 2005 Settlement Agreement for the Colombo Building,³ which limits the height of any new building thereon to 84 feet, or seven stories, and requires the façade design to include architectural details to ensure its compatibility with the Colombo Building and the buildings in the Jackson Square Historic District to the east. Development on Lot 5 by a private party would be subject to the 65-foot height limit under the Planning Code of the City and County of San Francisco (City).

CEQA requires public agencies to take feasible measures to avoid or minimize any significant environmental impacts which could result from projects subject to CEQA. When making a decision whether to approve a campus project, the District must determine which mitigation measures or project alternatives are feasible. In making this determination, the District can consider information related to economic, legal, social, technological, and other relevant

considerations, along with other information presented at the approval hearing. As part of that decision, CEQA requires that findings be made for each significant environmental effect of the project identified in this EIR. These findings set forth the underlying reasons used by the District in its approval of a project and explain whether and why mitigation measures and project alternatives have been accepted or rejected.

Where there are no feasible mitigation measures or alternatives to reduce the significant effects of a project, CEQA requires the District to prepare a statement of overriding considerations if it approves the project. A statement of overriding considerations would explain the District’s determination that specific overriding economic, legal, social, technological or other stated benefits of a project outweigh the significant environmental effects of a project, supporting the District’s decision to approve a project or a modified project despite any unavoidable significant adverse environmental impacts.

The first step of the review process for the project began with a Notice of Preparation (NOP), which was prepared and circulated for a 30-day review and comment period by various public agencies beginning on October 9, 2006. A copy of the NOP is attached hereto as Appendix A. The District conducted public scoping meetings on the EIR on November 27, 2006 and December 6, 2006 and received expression of concerns from members of the public. The environmental review consultant was directed to address the concerns related to the project’s impact on the physical environment in this EIR. Documents referenced in this EIR are available for review by appointment at the District offices at 33 Gough Street, San Francisco during normal weekday business hours (call 241-2229 for an appointment). The public review period for the Draft EIR (DEIR) begins on Wednesday, May 16, 2007 and will conclude at 5:00 p.m. on Monday, July 16, 2007. A public hearing on the Draft EIR will be held on June 28, 2007 at 6:00 p.m. at 33 Gough Street in San Francisco.

All written comments or questions about the Draft EIR should be addressed to:

Peter A. Goldstein
Vice Chancellor for Finance and Administration
San Francisco Community College District
33 Gough Street
San Francisco, CA 94103
In addition to the public hearing on the Draft EIR, the District will hold a bilingual information hearing in May 2007 in Chinatown to present the findings and conclusion of the Draft EIR.
I. SUMMARY

A. PROJECT DESCRIPTION

The San Francisco Community College District (District) proposes to construct a new Chinatown/North Beach Campus. Existing leased sites in Chinatown and North Beach would be relocated to the new campus. The Project Site is a 12,611-square-foot surface parking lot at Washington Street and Kearny Street, on Lots 9 and 10 in Assessor’s Block 195. The new building would have 18 classrooms, 24 laboratories, a multi-purpose room, a student center, culinary program space, administration and faculty offices, and a library, totaling 167,652 gross square feet (gsf)\(^1\) and 83,325 assignable square feet (asf)\(^2\) of space.

The District currently occupies a leased site at 940 Filbert Street and provides classes at six other leased locations throughout Chinatown and North Beach, and one location in the Marina District. The off-campus locations include 880 Clay Street, 827 Stockton Street, 1042 Grant Avenue, 15 Waverly Place, 407 Sansome Street, and 888 Clay Street in Chinatown and North Beach. The Marina site (which would remain) is at 3500 Fillmore Street. More than 30 sites have been leased and vacated since 1977. The 940 Filbert Street structure, leased from the San Francisco Unified School District, is an un-reinforced masonry building, formally an elementary school; it is not handicapped accessible and does not meet current structural or seismic codes.

The Chinatown/North Beach Campus serves approximately 6,200 to 6,500 students during any given semester, with about 700 students on the waiting list at the start of each semester. The District offers classes from 7:50 a.m. to 5:00 p.m. Monday through Friday, and from 5:00 p.m. to 9:00 p.m. Monday through Thursday; from 8:00 a.m. to 5:00 p.m. Saturday; and from 8:00 a.m. to 1:30 p.m. on Sunday.

\(^1\) Gross Square Footage (gsf) is the total building area. It includes interior circulation, vertical shafts, and mechanical and utility spaces, and is measured to the outside face of exterior walls.

\(^2\) Assignable Square Footage (asf) is the area that can be assigned to a specific program use. It does not include circulation space, vertical shafts, or non-programmed support spaces (such as bathrooms, and mechanical or utility rooms), and is measured to the inside face of walls of a room or area.
The Project would include a 16-story building that would rise to a height of 228 feet to the top of the roof, and 244.5 feet to the top of the mechanical penthouse screen.3

The building would consist of two distinct elements. The three-story base of the building would be about 51.5 feet to the top of railing. The base would be rectangular with a glass curtain wall facing the streets. The fourth floor would be recessed from the tower forming a waist to emphasize the tower. The fifth floor through the roof, from about 56.5 feet to 244.5 feet, would have a curvilinear glass curtain wall. The ground floor would have a 18.5 foot floor-to-floor height, and the rest of the floors would have a 13.5 foot floor-to-floor height. The Project would include an approximately 2,183-square-foot fourth floor terrace.

The Project would not include on-site parking. The District would lease 50 parking spaces for faculty and staff use in the St. Mary Center’s 150-space underground parking garage at 838 Kearny Street on the Project block, with access from Jackson Street. The District would apply for a 45-foot-long yellow zone to accommodate one freight and service loading space on Washington Street near the building’s freight elevator.

The building would be a LEED Certified Building that would lower campus energy and water consumption, reduce environmental impacts on the community, and provide a healthy environment for building occupants.

A Design Review Committee has been created for the Project. The Design Review Committee would review the Project design prior to the EIR certification and would hold follow-up review sessions to ensure that the design goals for the Project are accomplished. Additionally, members of the community participated in two design charettes on April 11 and April 19, 2007 to provide design input on the Project.

Project construction is anticipated to begin in early 2009 and would take approximately 24 months.

3 The height is measured from the top of the curb at the midpoint of the Kearny Street property consistent with the City and County of San Francisco Planning Code criteria for height calculations.
Prior to acting on the Project, the District’s Board of Trustees (Board) may adopt a resolution exempting the Project from the jurisdiction of the City and County of San Francisco. Even though the currently proposed Project would not comply with certain provisions of the Planning Code, the Project will be discussed in relation to the Planning Code in Section III.A, Land Use, Plans, and Zoning. Because the District does not have criteria for evaluating shadow impacts on public open space or wind effects, the EIR will analyze the Project’s shadow and wind impacts using the criteria in Planning Code Section 295 and Planning Code Section 148, respectively. Section 295 limits new shadow in public open spaces under the jurisdiction of the Recreation and Park Commission. Section 148 addresses wind impacts.

B. MAIN ENVIRONMENTAL EFFECTS

LAND USE AND ZONING

Land uses in the vicinity of the Project Site include residential, retail, hotel, offices, cultural, institutional, and public parking. Existing office, hotel, and residential uses with ground-floor retail uses are predominant on Washington Street, Kearny Street, Columbus Avenue and on the blocks nearest the Project Site.

The Project block is located at the juncture of four City neighborhoods: the Financial District, Jackson Square, North Beach, and Chinatown. High-rise structures in the Financial District, south and southeast of the Project block, provide office, retail, and some residential uses. The Jackson Square Historic District, east of Columbus Avenue and south of Broadway, contains buildings that are the sole survivors of the City’s pre-1906 earthquake central business district, and are the only physical reminders of the City’s beginnings as a port and mercantile center. The North Beach community to the north of the Project Site consists primarily of low-rise, multi-family residential above ground-floor retail uses that have historically catered to a large Italian population, and are now also home to Chinese and other immigrants who have opened a range of businesses, adding to the varied commercial character of this neighborhood. The Chinatown neighborhood is west of the Project block and contains a dense mixture of low-rise residential and commercial mixed-use buildings, including tourist-oriented and neighborhood-serving retail shops, restaurants and Chinese import companies. Generally, the Project Site is in a high-density
developed urban area, characterized by a mix of office, commercial, retail, and residential uses. The Project Site, a high-density educational use, would be compatible in a high-density mixed-use area.

Construction of the new campus building would change the use of the Project Site from a parking use to an educational use. Because land uses in the vicinity of the site include a mix of retail, office, and residential activities, the proposed educational use would not be incompatible with, or substantially alter, the mixed-use character of the site and vicinity; thus, the Project would not have a significant land use impact.

Under the Planning Code, the Project Site is in the 65-A Height and Bulk District, which limits buildings to 65 feet high with bulk requirements. The Project scale and dimensions would exceed the height and bulk requirements of the Planning Code, but these exceedances would not in themselves result in environmental impacts because the Project would not divide an existing community, nor conflict with the City’s General Plan or the City College Master Plan, adopted for the purpose of avoiding environmental impacts.

The District owns the vacant Lot 5 on the Project block. Development on Lot 5 by the District would be limited by the 2005 Settlement Agreement for the Colombo Building, which limits the height of any new building thereon to 84 feet and requires the façade design to include architectural details to ensure its compatibility with the Colombo Building and the buildings in the Jackson Square Historic District to the east.

If Lot 5 were developed by a private party, the development would be under the jurisdiction of the City and County, and the San Francisco Planning Code would control the use, height, dimensions, and design. Development of Lot 5 would not substantially change the overall land use conditions on the Project block or in the Project vicinity. Cumulative infill developments of this site and other sites in vicinity would not be expected to divide an established community or create substantial conflicts with the City’s policies and regulations adopted for the purposes of

reducing environmental effects. Therefore, the Project would not contribute to significant cumulative land use effects.

Physical impacts related to the size and dimensions of the proposed building are addressed in other sections of this EIR, including visual quality, transportation, shadow, and wind.

VISUAL QUALITY

The Project Site is completely paved and has no vegetation on the site, except for five street trees along the sidewalks of Kearny and Washington Streets. As noted above, the Project Site is surrounded by four major city districts: North Beach, Chinatown, Jackson Square, and the Financial District. The Financial District, bounded to the north by Washington Street, consists of office buildings and hotels, with heights ranging from two stories up to 53 stories. The 853-foot-tall Transamerica Pyramid and the 26-story, 300-foot-tall Montgomery-Washington Tower are on Montgomery Street east of the Project block. The Project Site is directly across Washington Street from the 28-story, 310-foot-tall Hilton Hotel. The recently completed 15-story, 155-foot-tall International Hotel Senior Center building (I-Hotel building) is at the northwest corner of the Project Block. The five-story St. Mary’s School is approved for construction between the I-Hotel building and the Project. A three-story building abuts the Project Site to the east on Washington Street.

Lower-scale development in the older North Beach, Chinatown, and Jackson Square Historic District adjoin the high-rise buildings in the Financial District. Washington Street includes high-rise buildings southeast of the Washington Street/Kearny Street intersection, and low-rise buildings to the south and west. Kearny Street is characterized by newer office high-rise buildings south of Sacramento Street, and transitions into older, lower-scale development in Chinatown.

North Beach, an older area of lower-scale development, is located north of the Project Site. The Colombo Building at Washington Street and Columbus Avenue, together with the old Transamerica Building on the east side of Columbus Avenue, have traditionally marked the entrance to the North Beach district. The North Beach area primarily consists of low-rise, multifamily residential buildings and retail establishments at street level.
The Jackson Square Historic District, bounded by Broadway on the north, Sansome Street on the east, Columbus Avenue on the west, and Washington Street on the south, is to the east of the Project block. The Historic District is developed with predominantly low-rise, brick and masonry buildings, dating back to the late 1800s. The Jackson Square Historic District is listed in the National Register of Historic Places, and is also designated as a local historic district in the Planning Code. Many of the buildings in the Jackson Square Historic District are listed as individual landmarks, such as the Old Transamerica Building on the east side of Columbus Avenue at Washington Street.

Other prominent features visible from the project vicinity include Telegraph Hill and Coit Tower to the north, and buildings of Chinatown and Nob Hill to the west. Public open space near the Project Site includes Portsmouth Square, at Kearny Street between Washington Street and Clay Street; St. Mary’s Square, three blocks to the south of the Project Site on Kearny Street; and Maritime Plaza, three blocks east of the Project Site.

The overall effect of the project would be to add high-rise building elements to Kearny Street and Washington Street that would contrast with the predominantly two- to four-story structures in North Beach, Chinatown, and Jackson Square. The Project would be lower in height than existing high-rise buildings in the Financial District to the south and east, and higher than the 15-story I-Hotel building on the Project block.

The 16-story Project would be a prominent element replacing a vacant site near generally low-rise developments directly east and west of the Project Site, and would result in a noticeable change in views from some nearby vantage points. No views of hills or open space from local parks, major roadways, or other public areas would be obstructed by the Project.

From Telegraph Hill and Coit Tower to the north, the Project would be visible, against the background of high-rise buildings in the Financial District. The curvilinear façade would be distinctive compared to other towers, but would not necessarily have a negative aesthetic impact. The building would alter views to the northeast of low-rise areas on the Project block as seen from Portsmouth Square, with views of the 16-story Project. This change in views from public open
space would be considered a substantial adverse change. Thus, the Project would have a significant adverse effect on views from a public area.

Some views of Telegraph Hill and Coit Tower looking north along Kearny Street between Sacramento Street and California Street would also be impaired by the building. However, views of Telegraph Hill and Coit Tower from Kearny Street closer to the Project Site would not be altered because they are already blocked by the existing 15-story I-Hotel building. Views of Telegraph Hill and Coit Tower from Kearny Street south of Sacramento Street are already blocked by the existing 28-story Hilton Hotel; the Project would only alter views of Coit Tower at certain points along Kearny Street within about one block, which would not be considered a substantial change in views. Therefore, the Project would result in a less than significant impact on these views.

The 244.5-foot-tall Project could also affect the visual context of the cultural resources in the area around the Project Site (such as the Columbo Building, the proposed Chinatown Historic District, and the Jackson Square Historic District) due its height and design. The Project would not demolish any structures, nor would it affect the eligibility of the Columbo Building and the proposed Chinatown Historic District for the National Register, nor would it affect the continued federal and local listing of the Jackson Square Historic Distinct.

The Project would change the visual setting on the west end of the Project block. Particularly, the Project would affect the visual character of the area around the Columbo Building. While there is no quantitative threshold for such visual quality impacts which are, to an extent, based on subjective judgment, it is conservatively determined that the changes to the visual context of the cultural resources in the area around the project site would be a significant adverse impact on visual quality. As there are no mitigation measures that could reduce this impact, this impact is considered significant and unavoidable.

The Project would introduce lighting typical of office uses to an area that is already lit by various uses, including office and residential uses; the Project would not result in adverse lighting impacts. Non-reflective glass would be used; the Project would not have adverse glare impacts.
Cumulative visual quality changes in the vicinity would include the Project, plus a 65 foot-high structure on Lot 5 developed by a private entity, which would be two to three stories higher than the adjacent buildings. The cumulative visual quality effects of a 65-foot building on Lot 5 plus the Project would not be substantially different from the effects of the Project. As noted above, development on Lot 5 by the District would be limited to 84 feet, and the façade design would be designed to include architectural details to ensure its compatibility with the Colombo Building and the buildings in the Jackson Square Historic District. While an 84-foot structure would be taller than adjacent buildings, it would be within the general scale of the Project block and Project vicinity. Because design of the 84-foot building would be required to be compatible with the design of the Colombo Building, development on Lot 5 by the District would also not adversely affect the visual quality impacts of the Project vicinity.

HISTORIC RESOURCES

The Project Site is in an area of San Francisco that has been developed since the Spanish, Mexican, and Early American Period, and remained developed throughout the Gold Rush Era and the late 19th and early 20th Century periods. Development on Lots 9 and 10 would include one basement level and require excavation of 16 feet below the present ground surface. The Archaeological Research Design and Treatment Plan (ARD/TP) assumed four subsurface floors and a foundation and excavation of 49 feet below the ground surface. As the Project would only excavate to a depth of 16 feet, the ARD/TP presents conservatively overstated determinations of potential Project impacts.

Excavation activities during demolition and construction may disturb previously unidentified cultural resources. It is not known whether significant archaeological resources exist at the Project Site. Since archaeological resources have been found in proximity to the Project Site, it is reasonable to presume that the Project Site may contain such resources. This would be a potentially significant adverse impact. With implementation of the identified mitigation measure, all potential cultural resource impacts would be reduced to less than significant.

Mitigation Measure C-1, Archaeological and Historic Resources, states that the Project Sponsor shall retain the services of a qualified archaeological consultant having expertise in California
prehistoric and urban historical archaeology. The District would implement the Archeological Research Design and Treatment Plan (ARD/TP) with an archaeological monitoring and/or data recovery program. This would ensure conservation of potential subsurface archeological and historic resources encountered on the Project Site.

The Project would not physically affect the Columbo Building on the Project block, and therefore would not impair the building’s continued eligibility for listing on the National Register of Historic Places. The Project would not physically affect structures within the existing Jackson Square Historic District to the east of the site, nor within the proposed Chinatown Historic District to the west. The Project would therefore not impair the continued listing of the Jackson Square Historic District on the National Register and as a local landmark district, nor affect the eligibility of the proposed Chinatown Historic District. Therefore, the Project would not result in significant adverse impacts on historic architectural resources.

TRANSPORTATION

The CCSF Chinatown/North Beach Campus Transportation Study (Transportation Study) prepared for the Project reviewed existing conditions on intersections, parking, transit, pedestrians, and loading conditions. The Transportation Study generally followed methods in the Planning Department’s Transportation Impact Analysis Guidelines for Environmental Review (SF Guidelines). Traffic and parking conditions for the Transportation Study were surveyed in 2005, and updated in April 2007. A survey was conducted in January 2007 to obtain information about how the students, faculty, and employees travel to and from the Chinatown/North Beach Campus.

The survey illustrated that about 75 percent of faculty/employees would come from San Francisco, and 98 percent of students would come from San Francisco. Over 93 percent of the trip origins are home for both faculty/employees and students. However, many City College students attend classes part-time, so that trip destinations from the campus would be to job locations, rather than home. About 61 percent of students would use transit to the campus, and about 31 percent would walk; this would be a total of about 92 percent. About five percent would
use private autos and two percent would carpool. About 50 percent of faculty and employee trips would use transit or walk. About 48 percent would use private autos or carpool.

The trip generation analysis for the Project was calculated based on the projected number of employees and faculty, and the maximum number of students that could be accommodated at any given time based on the total capacity of proposed classroom/laboratory space. This projected maximum of 1,700 students would be much higher than for afternoon and evening campus population based on the existing and future patterns, where afternoon and evening classes each represent about 21 percent of total daily classes or about 520 students. Thus, the analysis presented in this report would represent the worst-case condition for the Project.

Existing traffic conditions were evaluated for the weekday PM peak-hour (5:00 p.m. to 6:00 p.m.). The analysis is performed for the PM peak-hour because the background traffic is the heaviest. Based on the District class schedules, more students would travel to and from the campus during morning hours than during the PM peak period. However, the analysis of student trips during the PM peak period added to peak conditions on the surrounding network is appropriate. In addition, AM peak period conditions are also discussed in this impact analysis.

All of the study intersections (Kearny Street/Washington Street; Kearny Street/Jackson Street; Jackson Street/Columbus Avenue; Washington Street/Montgomery Street/Columbus Avenue) currently operate at LOS A or B. Under the Existing Plus Project and Future Cumulative Conditions, all of the study intersections are expected to continue operating at LOS A and B with the exception of Jackson Street/Columbus Avenue, which would operate at LOS C, an acceptable condition. There would be no significant changes to delays. Therefore, the Project would not cause significant impacts to the study intersections. Under Future Cumulative conditions, all of the study intersections currently operating at LOS A and B are expected to continue operating at LOS A and B with no significant effects at those intersections.

There would be no parking spaces provided on the Project Site; the District would lease 50 spaces from the St. Mary’s Center garage on the Project block. Based on the project demand, the 50 spaces would accommodate parking demand generated by employees and faculty. However, it would not meet the total demand generated by employees, faculty, and students. With the worst-
case, full-occupancy assumptions, there would be a parking deficit of approximately 179 spaces in the morning, 139 spaces during the noon-time, and 158 spaces in the afternoon. This deficit could be met by available spaces in the study area: there are approximately 351 spaces available in the parking facilities within two-block radius of the Project Site, taking into account the 69 spaces which would be removed by the Project.

Based on the January 2007 survey results, approximately 36 percent of the faculty/employee and 88 percent of the students who would drive reported that they would park on the street. On-street parking spaces are generally occupied in both Chinatown and Jackson Square area. Based on the Transportation Study data, on-street parking spaces in these two areas would be difficult to find.

While parking deficits are an inconvenience to drivers, they are not significant physical impacts on the environment. In support of the “Transit First” policy in the San Francisco General Plan, which emphasizes a shift from the use of personal automobiles to public transit, priority is given to transit improvements before developing transportation improvements which encourage the continued use of the automobile. Planning Code Section 161(d) implemented this policy for the Project Site and surrounding areas, and exempts most uses in the Chinatown Community Business District (CCB District) from providing off-street parking, except for uses on sites larger than 20,000 square feet. Faced with severe parking shortages, drivers generally seek and find alternative parking facilities or shift modes of travel (e.g., public transit, taxis, or bicycles). Parking shortfalls relative to demand are therefore not considered significant environmental impacts in the urban context of San Francisco.

Although a deficit of parking spaces is not considered to be a significant environmental impact in San Francisco, this EIR describes the project’s parking impacts. Under the San Francisco Planning Code Section 161(d), the Project would not be required to provide any off-street parking. Planning Code 161(d) exempts non-residential development in the Chinatown Community Business District, such as the Project, from any parking requirements if the development lot does not exceed 20,000 square feet. The Project would, accordingly, not provide any on-site parking.
I. Summary

As noted above, the trip generation for the Project was calculated based on the projected number of employees and faculty, and the maximum number of students that could be accommodated based on the total capacity of proposed classroom/laboratory space. Thus, the transit analysis would represent the worst-case condition.

Based on this full occupancy condition, MUNI ridership would increase to approximately 1,173 during the AM peak hour (all inbound trips) and 1,993 during the PM peak-hour transit trips (including both outbound for the afternoon classes and inbound for the evening classes). Of the total 1,173 MUNI riders during the AM peak hour and 1,993 MUNI riders during the PM peak hour, the net new MUNI riders would be approximately 322 during the AM peak hour and 1,489 during the PM peak hour.

In comparison, the transit demand based on current patterns of morning, afternoon, and evening classes, with a 21 percent increase in total student population, would result in about total 608 PM peak-hour transit trips in both inbound and outbound directions. The net transit passengers would be increased by approximately 176 during the AM peak hour and 103 during the PM peak hour.

Under the full occupancy assumption, the Project contribution to the future growth in MUNI volumes would exceed the five percent threshold generally used by the Planning Department to determine adverse impacts. Although the full-occupancy conditions is considered a worst-case assumption compared to current class schedule patterns, the Project’s increase in demand on transit is conservatively judged to have a significant impact on transit capacity. Since there are no measures that could be implemented directly by the District to reduce this transit impact, this impact would be significant and unavoidable.

The Project’s pedestrian, bicycle, loading, and construction impacts are considered to be less than significant. With regard to bicycle conditions, the Project’s basement would include storage for 70 bicycles. Additionally, improvement measures have been identified to further reduce potential impacts regarding transit, loading, and construction. Improvement Measure D-1, Parking Impacts, recommends that the District implement a transportation demand management program (TDM). The District is in discussion with MUNI about the possibility of establishing a new Class Pass for
students. Improvement Measure D-2, Loading Impacts, recommends the District seek an approval for a yellow loading zone in order to meet the loading demand; the District plans to seek approval for a 45-foot long yellow loading zone. Improvement Measure D-3, Garbage Service, recommends the District make an arrangement with the waste management services to pick up the garage bins from the garbage room to avoid use of sidewalk space for garbage containers. Improvement Measure D-4, Construction Impacts, recommends that truck movements be limited to the hours before 3:30 p.m. and that the Project Sponsor and construction contractor(s) meet with the Traffic Engineering Division of the Department of Parking and Traffic, the Fire Department, and the Department of Public Works to determine feasible traffic mitigation measures to reduce traffic congestion and pedestrian circulation impacts during construction of the Project. In addition, to ensure that construction activities do not impact MUNI bus stops or routes in the area, the Project Sponsor should coordinate with MUNI’s Chief Inspector prior to construction. The District plans to implement this measure.

GEOLOGY AND SOILS

According to the Geologic Hazard Evaluation and Geotechnical Investigation prepared for the Project Site, the Project Site is underlain by approximately 13.5 feet of fill, primarily consisting of sandy fill and debris. The fill is underlain by heterogeneous layers of sand, silty and clayey sand, and sandy clay to the depths explored in the geotechnical study. Based on the evaluation of subsurface soils at adjacent sites, there may be loose to medium dense sandy layers at the Project Site that could undergo liquefaction, lateral spreading, and differential compaction during strong seismic shaking.

The California Building Code (CBC) requires the use of designated site-specific seismic factors to establish the design of the seismic-restraint systems to be integrated into foundations and structures. The direct results of ground shaking (structural damage) and its secondary results (exposure of people to seismic hazards) would be reduced to an acceptable level by compliance with current regulations applicable to the development of the Project. Therefore, the impact would be less than significant. In addition, as a community college, the Project must comply with stricter building requirements pursuant to the Field Act in order to minimize seismic impacts.
Environmental effects related to geology and soils are generally site-specific and depend on each project’s design and site conditions. Such impacts do not accumulate among projects. Thus, the Project would have no cumulative impact related to geology and soils.

HAZARDS AND HAZARDOUS MATERIALS

According to the Phase I Report prepared for the Project, soil and groundwater contamination, and pollutant levels were all found to be within appropriate safety levels for proposed construction and excavation. Compliance with all applicable laws governing hazardous materials would ensure that the Project would not expose persons or the environment to hazardous materials concentrations in excess of state and federal guidelines. The impact of potential hazards associated with contaminated soil and groundwater is considered less than significant.

Although not a significant environmental effect, worker health and safety procedures should address exposure to petroleum hydrocarbons during fill excavation at the Project Site. Mitigation Measure F-1 has been recommended to ensure the potential impacts regarding contaminated soil or groundwater remain less than significant. Mitigation Measure F-1, Soil Excavation, states that, at the time of excavation, excavated soils will be tested and classified and treated and/or reused on site and/or disposed of at an appropriate facility in accordance with determinations made and approved by the San Francisco Department of Public Health (SFDPH) and/or a State agency in accordance with a Soil Excavation Plan (SEP) to be approved by SFDPH or the designated State agency. Reuse of contaminated soils on-site may require a risk assessment to determine potential effects to future site occupants and/or occasional utility maintenance workers.

During construction activities, dust control measures would be implemented to reduce exposure to contaminated soils (see Mitigation Measures AQ-1, Air Quality). These measures, implemented by the excavation contractor, would include moisture-conditioning the soil, using dust suppressants, or covering the exposed soil with plastic sheeting.

Compliance with all applicable hazardous materials laws would ensure that the Project would not expose persons or the environment to hazardous material concentrations in excess of state and federal guidelines.
Implementation of Mitigation Measure F-1 would also ensure that there would be no cumulative impacts.

SHADOWS

The Project Site is surrounded by development, including high-rise buildings to the south and east. The existing low-, mid-, and high-rise buildings around the Project currently create substantial shadows. There are no buildings on the Project Site; thus, none of the existing shadows cast on Portsmouth Square are from the Project Site.

Public open space in the Project vicinity that could be affected by Project shadows include Portsmouth Square, southwest of the Project Site; Maritime Plaza, three blocks east of the Project Site; and St. Mary’s Square, three blocks south of the Project Site. All three parks are under the jurisdiction of the Recreation and Park Department.

Based on the shadow analysis, the Project would not add any shade to Maritime Plaza or St. Mary’s Square. The Project would not add shade to Portsmouth Square on any day throughout the year after 8:00 a.m. The Project would add shade to the northwest corner of Portsmouth Square an hour past sunrise from about May 10 to July 30. The maximum time of new shade on any given day would be between about 15 minutes and 45 minutes after the one-hour after sunrise threshold (between the hours of 6:45 a.m. through 7:45 a.m. PDT, and would decrease during the hour). The maximum effect would occur on June 21 at about 6:45 a.m., when the Project would shade approximately 5,021 square feet for about 14 minutes. The shaded area includes planted slopes adjacent to the Washington Street sidewalk and benches and landscaped areas near Washington Street and Walter E. Lum Place. The area near the benches has large Monterey pines and other mature trees. As the sun continues to rise, the shadow length and affected area would decrease. Within 45 minutes or less after one-hour after sunrise, the sun would move to the south and shade from the Project would move be completely off the park.

Based on observations of the park at different times of day, Portsmouth Square is heavily used by residents, for sitting, socializing, exercising, or walking. Visitors sit on benches with sun exposure and in the shade. Groups play cards in the roofed pavilions and in the plazas. Users
were observed in morning periods before direct sun reached large areas of the park. Activities during morning periods include up to 20 persons exercising near the play structure near Clay Street that would not be shaded by the Project at any time. In April, at one hour after sunrise, two or three persons were observed sitting on benches in the northwest corner of the park that were in the shade at those times. Based on these patterns of use, the limited time and location of new shade from the Project would not adversely affect park use. The Project would therefore not have significant shadow effects on Portsmouth Square.5

The net new shading of street, sidewalks, and open space that would result from the Project would be limited in scope, and would not increase the total amount of shading above levels that are common and generally accepted in urban areas. These would not be considered significant shadow effects.

WIND

Wind conditions affect pedestrian comfort on sidewalks and in other public areas. The comfort criteria are based on pedestrian level wind speeds that include the effects of turbulence. These adjusted wind speeds are referred to as “equivalent wind speeds.” Similar to Section 148 of the Planning Code, comfort criteria have an equivalent wind speed of 7 mph in public seating areas and 11 mph in areas of substantial pedestrian use for the microclimate analysis. New buildings and additions to buildings may not cause ground-level winds to exceed these levels more than ten percent of the time year round between 7:00 a.m. and 6:00 p.m. Additionally, hazard criterion equivalent wind speed of 26 mph for a single full hour per year are used for the microclimate analysis. Under the Planning Code, a building or addition that would cause wind speeds to exceed the hazard level of more than one hour of any year must be modified to meet this criterion.

Wind tunnel testing for the Project was conducted to determine potential design-specific impacts on pedestrian comfort, and to provide a basis for design modifications to mitigate these impacts if they were significant.

5 On an annual basis, the Project would add less than 0.05 percent new square-foot-hours of shade to Portsmouth Square. Under adopted City guidelines, Portsmouth Square has a 0 percent limit for new shadow.
Wind speeds currently exceed the Planning Code comfort criteria of 11 mph (more than 10 percent of the time) at 5 of the 21 sidewalk pedestrian locations tested. These exceedances are generally located along Washington Street east of the Project Site, and at the Jackson Street/Columbus Avenue intersection. The highest wind speeds in the vicinity (18 mph) occurs at the southwest corner of Washington Street and Columbus Avenue. The average wind speed for the test point locations is approximately 10.7 mph.

20 of the 21 sidewalk test locations currently do not exceed the wind hazard criterion. One test location (at the northeast corner of Washington Street and Montgomery Street) exceeds the wind hazard criterion (speeds reaching or exceeding the hazard level of 26 mph, as averaged for a single full hour of the year) under existing conditions. Total duration of the existing exceedance is five hours per year.

According to the Wind Study, the Project and cumulative development would eliminate the single exceedance of the wind hazard criterion. There would be no wind hazard exceedances, a reduction of five hours per year. Because the Project would eliminate hazardous wind exceedances, the Project would have a beneficial effect on hazardous wind conditions and would not result in significant project-level or cumulative adverse effects on hazardous winds.

AIR QUALITY

Construction emissions during demolition, foundation excavation, and site grading could cause adverse effects on local air quality by adding wind-blown dust to the particulate matter in the atmosphere while soil is exposed. Implementation of the dust control measures in Mitigation Measure AQ-1 would reduce the effects of fugitive dust during construction activities to a less-than-significant level. Mitigation Measure AQ-1, Dust Control, states that the District shall require the contractor(s) to implement mitigation measures during Project construction, in accordance with standard mitigation requirements from the BAAQMD and District.

Construction emissions would also include diesel emissions from heavy-duty construction equipment which could result in significant diesel particulate matter and ozone precursor emissions, and generate airborne odors. The BAAQMD recommends implementation of measures
to reduce combustion emissions from construction equipment, particularly diesel emissions. Implementation of Mitigation Measure AQ-2 would reduce diesel emissions during construction to a less-than-significant level. Mitigation Measure AQ-2, Efficient Operation of Construction Equipment, concerns the maintenance and operation of construction equipment to minimize exhaust emissions of particulates and other pollutants.

The application of architectural coatings could also generate airborne odors; however, the application and use of architectural coating is regulated by BAAQMD. As such, implementation of the recommended construction equipment exhaust mitigation measures and compliance with BAAQMD’s regulations regarding architectural coating would reduce these impacts to a less-than-significant level.

Regarding operational impacts, because intersection conditions at the study intersections would be below the thresholds identified by the BAAQMD under the Project and cumulative scenarios, existing and future CO concentrations near these intersections would not be expected exceed the national 35.0 ppm and state 20.0 ppm one-hour ambient air quality standards, or the national 9.0 ppm and state 9.0 ppm eight-hour ambient air quality standards. Therefore, sensitive receptors located close to these intersections would not be exposed to substantial pollutant concentrations, and the potential air quality impacts of the Project and cumulative development would be less than significant.

NOISE

The existing noise environment in the Project area is typical of noise levels in urban San Francisco. The primary sources of noise in the Project area are traffic-related; most notable are the heavy volumes of traffic along Kearny Street and Washington Street. Existing land uses surrounding the Project vicinity constitute minor sources of noise (e.g., ventilation equipment, etc.) from residential, office, and commercial activity.

Construction of the Project and other foreseeable projects would potentially cause disturbance to nearby residents, businesses, and occupants of Portsmouth Square. Construction activities at the Project Site and from foreseeable projects would be mostly limited to the hours permitted under the San Francisco Municipal Code. Without mitigation, noise levels during construction could exceed the San Francisco Police Code regulations for noise from construction equipment of 80 dBA Leq at a distance of 100 feet. Implementation of Mitigation Measure J-1 would result in less-than-significant impacts from construction of the Project and reduce the Project’s contribution to the cumulative noise environment to less than cumulatively considerable.

Construction equipment from the Project and foreseeable development would also have the potential to generate low levels of groundborne vibration. The closest vibration sensitive receptors would be residents on adjacent properties. As the closest residents would be closer than 50 feet, construction of the Project would exceed 80 VdB at that distance. Implementation of Mitigation Measures J-2 would reduce Project vibration impacts to less than significant and reduce the Project’s contribution to the cumulative noise environment to less than significant.

The Project would generate approximately 216 new vehicle trips during the PM peak hour, which could result in an increase in traffic noise levels in the Project vicinity. Noise level increases associated with Project traffic would not cause a substantial increase in traffic noise levels at nearby sensitive receptors because the increase in traffic volumes would not be significant when compared to existing traffic levels. Therefore, the Project would not have a significant adverse effect on noise conditions affecting surrounding residential uses, the future St. Mary’s School, or open space uses, such as Portsmouth Square. Since the Project’s contribution to traffic noise levels would not be substantial, the Project’s cumulative contribution would be less than cumulatively considerable.

Operation noise at the Project Site would primarily be associated with noise from ventilators and other mechanical equipment. Per the San Francisco Police Code Section 2909, noise levels from stationary equipment would be significant if noise levels exceed 60 dBA at the property line. Implementation of Mitigation Measure J-3 would reduce the Project’s impact to less than
significant and ensure that the Project’s contribution to the cumulative noise environment would be less than cumulatively considerable.

PUBLIC SERVICES

The Project would be an infill development that is already served by the police and fire departments. The Project is a community college and thus would not increase demands on schools. The Project would benefit community facilities because it would provide a library. Environmental effects related to public services would be less than significant.

There is one foreseeable project in the vicinity of the Project Site, the St. Mary’s School, which would be directly north of the Project Site. The St. Mary’s School is also an infill development that is already served by the police and fire departments. The St. Mary’s School is an educational use with a private playground and thus would not increase demands on schools or substantially increase demands on parks. Thus, the Project would have no cumulative impact related to public services.

UTILITIES

The Project Site is already served by wastewater and stormwater facilities, and would replace impervious surfaces (parking uses) with a new building. Thus, the Project would not increase demand on the City’s storm drainage system because the Project would result in similar stormwater runoff than under existing conditions. While the Project would replace a surface parking lot, which does not contribute wastewater, the Project would contribute wastewater as a commercial structure and would not be expected to increase the flow of wastewater such that an expansion of the existing infrastructure would be required. Project-related wastewater and stormwater would be treated to standards contained in the City’s National Pollutant Discharge Elimination System (NPDES) Permit for the Southeast Water Pollution Control Plant prior to discharge into the Bay. The NPDES standards are set and regulated by the Bay Area Regional Water Quality Control Board (RWQCB); therefore, the Project would not conflict with RWQCB requirements in that the Project would not require the expansion of wastewater/stormwater treatment facilities or an extension of a sewer trunk line as the site is currently served by existing
facilities. Therefore, no new wastewater/storm water infrastructure would be required to serve the Project, no impact would result from new construction.

The Project Site is within a developed area of San Francisco and is zoned for more intense uses than the existing parking lot. Development of such site would be within Urban Water Management Plan (UWMP) projections. Therefore, the Project would not exceed the UWMP’s water supply projections. No additional water supply infrastructure would be required to serve the proposed project. The approved St. Mary’s School and potential development of Lot 5 would be infill development. As such, development of these sites would also be within UWMP projections. The Project plus cumulative development would not require additional water supply infrastructure.

With regard to solid waste disposal, the landfill serving San Francisco is expected to remain operational for 20 or more years, and has current plans to increase capacity by adding 250 additional acres of fill area. Given the existing and anticipated increase in solid waste recycling and the proposed landfill expansion in size and capacity, the impacts on solid waste facilities from the proposed project would be less than significant. With sufficient landfill capacity to accommodate solid waste generated in the future and increasing diversion of solid waste to recycling, the Project in combination with other growth in the landfill service area would have a less-than-significant cumulative impact on solid waste disposal services.

Since the Project would comply with Title 24 conservation standards and would be served by PG&E, the Project would not directly require the construction of new energy generation or supply facilities and the Project’s impact on energy would be less than significant. Existing and planned gas and electric service by PG&E to the City would meet the needs of the cumulative development. The California Public Utilities Commission requires PG&E to provide service to its existing and potential customers. Since the Project and future cumulative development would comply with Title 24 conservation standards and would be served by PG&E, cumulative development would not require the construction of new energy generation or supply facilities that are directly attributable to growth in the City. Thus, the cumulative impact on energy demand with the Project would be less than significant.
C. ALTERNATIVES

The Alternatives section identifies alternatives to the Project, including alternative sites and building configuration. This section also presents information about the feasibility of each alternative and discusses the associated environmental impacts. The section also describes and reexamines alternative sites assessed in previous environmental documents. The following alternatives are analyzed in this section:

The following alternatives are analyzed in this section:

- No Project Alternative
- Alternative A: A Two-Site Alternative with a 65-foot building on Lots 9 and 10 and a 65-foot building on Lot 5
- Alternative B
 - Variant 1: A Two-Site Alternative with a 201-foot building on Lots 9 and 10 and a 65-foot building on Lot 5
 - Variant 2: A Two-Site Alternative with a 201-foot building on Lots 9 and 10 and a 78.5-foot building on Lot 5
- Alternative C: A Two-Site Alternative with the 880 Clay Street building and a 188.5-foot building on Lots 9 and 10
- Alternative D: Two-Site Alternative with the St. Mary’s School
 - Variant 1: Purchase or lease two floors of the St. Mary’s School and construct a building on Lots 9 and 10 for the remainder of the programs.
 - Variant 2: Construct additional two floors within the St. Mary’s School and construct a building on Lots 9 and 10 for the remainder of the programs.
 - Variant 3: Construct building on Lots 9 and 10 with a cantilever over the St. Mary’s School
- Alternative E: Off-Site Alternative with a new building at 940 Filbert Street

No Project Alternative and Alternative A would avoid the Project’s significant and unavoidable visual quality impact. Alternative A would avoid the significant unavoidable visual quality impact of the Project because two 65-foot-tall buildings would be constructed. However, Alternative A would not meet all of the program goals of the Project and would provide less than one-half of the
I. Summary

Project floor area. The District would be required to lease additional space in the Chinatown/North Beach area in order to maintain its current program offerings.

Alternatives B, C, and D would also result in lower buildings on Lots 9 and 10, but these buildings would still be over 188 feet tall in order to accommodate the Project programs. Thus, these alternatives would not avoid the Project’s significant and unavoidable visual quality impacts.

Alternatives A, B, C, and D would introduce additional costs associated with constructing and maintaining two buildings. The additional construction and operating costs associated with the construction of two buildings would be higher than one building with about the same amount of floor area. The cost of constructing two buildings under Alternative B with the same square footage as the Project would be about 27 million dollars higher that the Project. Thus, the District may not be able to fund the construction of both buildings concurrently, resulting in the need to reduce the program offered by the District for the Chinatown North Beach Campus.

Alternative E would avoid the Project’s visual quality impacts since this alternative does not include construction on Lots 9 and 10. However, the building would be approximately 135 feet high, nine stories with a mechanical penthouse, at Filbert Street, and approximately 152 feet tall and 10 stories high, with a mechanical penthouse, at Valparaiso Street (down slope from Filbert Street). This alternative would have significant adverse visual impacts because the new building would be constructed in a low-rise residential neighborhood setting of Russian Hill. A 10-story mid-rise building on this site would not be compatible with the character of this area.

Furthermore, consolidating the Chinatown/North Beach Campus sites from seven locations would intensify the institutional use in a predominately residential area, compared to the mixed-use area around the Project Site, and would increase the number of faculty, employees, and students currently attending classes at this location. Compared to the mixed-use character of the Project Site at Kearny Street and Washington Street, changes with Alternative E would be considered to have an adverse impact on land use character at the Filbert Street site.
Following public review and certification of the EIR, the Board will consider the alternatives set forth in the EIR as part of its decision whether to approve the project. At that time, the Board will determine whether adoption of an alternative to the Project would be feasible or infeasible, taking into account specific economic, legal, social, technological, and other considerations, per CEQA Guidelines Section 15091, 15092, and 15093.

D. AREAS OF CONTROVERSY

Development proposals in the Project vicinity has been controversial since tenants of the International Hotel (a low-cost, long-term residential hotel) were evicted in 1977, and the hotel was demolished in 1979. The site of the International Hotel is adjacent to the Project Site. A project was approved in December 1996 on that site to provide senior housing, a Catholic Center/School, and parking. The I-Hotel building has been constructed on the northern portion of the site; the St. Mary’s School building is approved for construction on the southern portion of the site.

The 1998 Chinatown North Beach project was controversial because it included the demolition of the Colombo Building on Lot 4 and the loss of 21 residential units in the Fong Building on Lot 12. Although the EIR was certified in 1998, the District did not construct the campus. Subsequently, the currently Project was proposed because it would not demolish the Columbo Building or result in the loss of residential units.

The expected areas of controversy for the Project include visual quality, shadows, and parking and transportation. The visual impacts will be controversial due to the height and distinctive design of the Project. The EIR concludes that the Project may result in a significant and unavoidable impact on the visual quality context of historic resources near the Project Site (such as the Columbo Building), and on views from Portsmouth Square, due to the height and design of the Project in the context of Chinatown and North Beach.

The shadows will be controversial due to Project shade on Portsmouth Square. The Project would shade the northwest corner of Portsmouth Square an hour past sunrise, between about 15 minutes and 45 minutes in length before 8:00 a.m., from about May 10 to July 30. Based on these
patterns of use, the limited time and location of new shade from the Project would not adversely affect park use. The Project would therefore not have significant shadow effects on Portsmouth Square. The net new shading of street, sidewalks, and open space that would result from the Project would be limited in scope, and would not increase the total amount of shading above levels that are common and generally accepted in urban areas; the Project would not result in significant shadow effects.

Parking and transportation will be controversial due to the existing parking and transportation constraints in downtown San Francisco. The Project would not result in a substantial increase in demand on parking or vehicle traffic, and impacts would be less than significant. However, the EIR concludes that, under worst-case occupancy assumptions, the Project would result in a significant and unavoidable impact on transit capacity in the MUNI southeast corridor.
II. PROJECT DESCRIPTION

The District proposes to build a new City College campus in the Chinatown/North Beach area of downtown San Francisco to better serve the local Chinese community and surrounding neighborhoods (see Figure 1). The Project would construct a 167,652 gsf, 16-story building that would rise to a height of 228 feet to the top of the roof, and 244.5 feet to the top of the mechanical penthouse screen. The main entrance to the building would be from Kearny Street (see Figure 2). The programs offered at the seven existing leased Chinatown/North Beach locations would be consolidated into the Project (see p. II-5, below, and Figure 3) for list of leased locations. However, the existing leased site at the Marina Middle School would remain.

A. PROJECT OBJECTIVES

The District has identified the following Project objectives:

- Provide affordable and accessible public education.
- Expand and improve program of classes offered, job training programs, and services.
- Ensure that the program and services will be accessible to those with disabilities in conformance with the California Building Code and the Americans with Disabilities Act of 1990.
- Construct a facility that complies with current seismic and fire safety requirements (some spaces currently leased by the District do not comply with Building Code and seismic safety standards).
- Construct a permanent facility to ensure efficient and adequate service to the students and to permit renovations with State funds (which cannot be used for renovation of leased space) to meet future needs, and to allow for the use of various educational equipments, such as chalkboards (which cannot be used in some leased sites).
- Construct a permanent facility to avoid future searches for replacement sites and rental costs when the leased terms end, and to reallocate the funds for rental toward programs at the new campus.

1 When measured from the top of the curb at the midpoint of the Kearny Street property, consistent with the City and County of San Francisco Planning Code criteria for height calculations.
II. Project Description

- Own and operate a permanent facility to ensure availability of space at all times when needed for offered programs; to house technology and support services (which cannot be housed in joint-use facilities); and to enable preparation of long range programs and service planning to meet the needs of the community.

- Provide adequate storage space for all types of equipment; and design the classroom labs and other spaces for adults (many leased joint-use facilities are designed for children).

- Construct a LEED certifiable building that is energy efficient and environmentally friendly.

B. PROJECT LOCATION

The 12,611-square-foot Project Site is located at the northeast corner of Washington Street and Kearny Street in downtown San Francisco (see Figure 1), on Lots 9 and 10 of Assessor’s Block 195. The street address of Lot 10 is 800 Kearny Street, according to the San Francisco Office of the Assessor parcel map.

The District established the following site selection criteria for the Chinatown/North Beach Campus:

- **Site Accessibility**: The new campus location should be conveniently situated for all age groups within the community it serves.

- **Accessibility to Public Transportation**: The new campus should be located in proximity to major transit lines (BART and MUNI) to discourage the use of private automobiles.

- **Pedestrian Access**: With approximately 31 percent of students walking and 61 percent using public transportation to and from their classes, the new campus site must be accessible by the disabled using public transit and/or city streets.

- **Bicycle Access**: Encourage the use of bicycles as an alternative means of transportation by locating the campus close to bicycle routes.
FIGURE 2: SITE PLAN

CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

45-Foot Loading Zone

SOURCE: Esherick Homsey Dodge & Davis/Barcelon + Jang.
FIGURE 3: CHINATOWN/NORTH BEACH CAMPUS LEASED SITES

SOURCE: City and County of San Francisco, August 2000.
C. PROJECT CHARACTERISTICS

EXISTING CAMPUSES AND PROGRAMS

As of October 2006, City College classes were held at the following 12 locations:

- Ocean Avenue Campus at 50 Phelan Avenue
- Southeast Campus at 1800 Oakdale Avenue
- Evans Campus at 1400 Evans Avenue
- Castro-Valencia Campus at 1220 Noe Street (at 24th Street)
- Mission Campus at 375 Alabama Street
- Downtown Campus at 88 4th Street (at Mission Street)
- Alemany Campus at 750 Eddy Street
- John Adams Campus at 1860 Hayes Street
- Chinatown Campus at 940 Filbert Street
- Fort Mason at Laguna Street and Marina Boulevard
- Gough Street Site Adult Learning and Tutorial Center at 31 Gough Street
- Airport Campus at San Francisco International Airport, Building 928

The District serves approximately 100,000 full-time and part-time students annually at those sites and off-campus locations. The District offers classes during two 17 ½-week semesters, and one eight-week summer session (as of Summer 2007). Employment at the campuses fluctuates from semester to semester, depending on student enrollment. The District has a total of about 3,245 part-time and full-time employees, including 118 employees assigned to the Chinatown/North Beach Campus.

The current Chinatown/North Beach Campus program is housed at the 940 Filbert Street location, six off-campus locations in Chinatown and North Beach, and one location in the Marina. The off-campus locations include 880 Clay Street, 827 Stockton Street, 1042 Grant Avenue, 15 Waverly Place, 407 Sansome Street, and 888 Clay Street in Chinatown and North Beach. The Marina site is at 3500 Fillmore Street.

The Chinatown/North Beach Campus serves approximately 6,200 to 6,500 students during any given semester, with about 700 students on the waiting list at the start of each semester. There
are approximately 1,700 students on campus at a given time on a weekday. The District offers classes from 7:50 a.m. to 5:00 p.m. Monday through Friday, from 5:00 p.m. to 9:00 p.m. Monday through Thursday; from 8:00 a.m. to 5:00 p.m. Saturday; and from 8:00 a.m. to 1:30 p.m. on Sunday.

Approximately 48 percent of the students travel to the Chinatown/North Beach Campus from the Chinatown, North Beach, and Financial Districts, and 35 percent of the students travel from the South of Market Area/Mission District. As noted above, 61 percent of the students use public transportation and 31 percent of the students walk to their classes.

PROJECT ELEMENTS

Program

The building would have 20 classrooms, 26 laboratories, a multi-purpose room, a student center, culinary program space, administration and faculty offices, and a library, totaling 167,652 gross square feet (gsf) with 83,325 assignable square feet (asf) of space.

Existing classes and programs to be consolidated at the new Chinatown/North Beach Campus include the following:

- ESL (English as a Second Language) programs
- Chinatown American Cooks School instruction
- ESL/Citizenship Program
- Vocational ESL for Health and Food Service Workers
- Child Development

2 See Figure 1 in Appendix B of the Transportation Study. The Transportation Study is on file of the District’s office at 33 Gough Street and available for public review by appointment.

3 Assignable Square Footage (asf) is area that can be assigned to a specific program use. It does not include circulation space, vertical shafts, or non-programmed support spaces (such as bathrooms, and mechanical or utility rooms), and is measured to the inside face of walls of a room or area.

Gross Square Footage (gsf) is the total building area. It includes interior circulation, vertical shafts, and mechanical and utility spaces, and is measured to the outside face of exterior walls.
II. Project Description

- Business and Finance Classes
- Vocational Office Training Program
- Home Health Aid Classes
- Computer Application Classes
- Vocational ESL Classes for Housekeeping
- Vocational ESL Classes for Chinese Cooks
- Health Science

Classes and programs to be reinstated or added to the campus by the Project include:

- Core Credit Courses Leading to an Associate Degree
- Asian American Studies Program
- Tai Chi Classes
- Transitional Studies Program
- Continuing Education
- Gerontology
- Physical & Wellness Education

The administration and faculty offices would provide the following services:

- Bilingual/Bicultural Support Staff
- On-site Admissions, Assessment and Placement
- Academic, Personal, Financial and Career Counseling
- Disabled Student Program Services
- Child Development Program Advising
- Asian Pacific Academic Student Success Program (APASS)
- Computer and Multimedia Access
- Teleconference Capabilities
- Community Referral Services
- Educational and Life Skills Workshops

Parking and Loading

The Project would not include on-site parking. The District would lease 50 parking spaces for faculty and staff use in St. Mary Center’s 150-space underground parking at 838 Kearny Street (Kearny Street and Jackson Street) on the Project block with access from Jackson Street. The District would apply for a 45-foot long yellow zone to accommodate one freight and service loading space on Washington Street near the building’s freight elevator.

Building Elements

The building would consist of two distinct elements. The three-story base of the building would be about 51.5 feet to the top of railing. The base would be rectangular with a glass
curtain wall facing the streets. The fourth floor would be recessed from the tower forming a waist to emphasize the tower. The fifth floor through the roof, from about 58.5 feet to 244.5 feet, would have a curvilinear glass curtain wall (see Figure 4). The ground floor would have a 18.5 foot floor-to-floor height, and the rest of the floors would have a 13.5 foot floor-to-floor height.

The basement would include the kitchen and bookstore (see Figure 5). The ground floor would house administrative, counseling, and assessment services, as well as a cafe. The second through third floors would house the library, classrooms, faculty and administrative offices, and laboratories (see Figures 6 and 7). The fourth through 16th floors would house classrooms, faculty and administrative offices, and laboratories. Table 1, below, lists the program space in the Project.

The Project would include an approximately 2,183-square-foot fourth floor terrace. The building would be a LEED Certified Building that lowers energy and water consumption, reduces environmental impacts on the community, and provides a healthy environment for building occupants.

With regards to Project design, a Design Review Committee has been created for the Project, as recommended in the Draft EIR prepared for the 2004 City College Master Plan. The Design Review Committee would review the Project design prior to the EIR certification and hold follow-up review sessions to ensure that the design goals for the Project are accomplished. Additionally, members of the community were invited to two design charrettes on April 11 and April 19, 2007 to provide design input on the Project.

D. PROJECT SCHEDULE

Project construction is anticipated to begin in early 2009 and would take approximately 24 months.

4 2004 City College Master Plan Draft EIR, page 4.2-9.
TABLE 1
PROJECT CHARACTERISTICS

<table>
<thead>
<tr>
<th>Category</th>
<th>Required Program Number of Rooms/Spaces</th>
<th>Required Program Assigned Square Footage (asf)</th>
<th>Project Program Number of Rooms/Spaces</th>
<th>Project Program Assigned Square Footage (asf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>18</td>
<td>17,000</td>
<td>18</td>
<td>16,970</td>
</tr>
<tr>
<td>Laboratories</td>
<td>27</td>
<td>34,300</td>
<td>24</td>
<td>32,710</td>
</tr>
<tr>
<td>Gallery</td>
<td></td>
<td>800</td>
<td></td>
<td>658</td>
</tr>
<tr>
<td>Lounge</td>
<td></td>
<td>3,500</td>
<td></td>
<td>3,483</td>
</tr>
<tr>
<td>Library</td>
<td></td>
<td>11,000</td>
<td></td>
<td>10,197</td>
</tr>
<tr>
<td>Student Services</td>
<td></td>
<td>5,360</td>
<td></td>
<td>4,319</td>
</tr>
<tr>
<td>Bookstore</td>
<td></td>
<td>0</td>
<td></td>
<td>552</td>
</tr>
<tr>
<td>Faculty Offices</td>
<td></td>
<td>7,000</td>
<td></td>
<td>7,214</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
<td>3,500</td>
<td></td>
<td>3,318</td>
</tr>
<tr>
<td>Security</td>
<td></td>
<td>500</td>
<td></td>
<td>575</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td>1,560</td>
<td></td>
<td>1,370</td>
</tr>
<tr>
<td>Auditorium</td>
<td>1</td>
<td>5,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multi-Purpose Room</td>
<td>1</td>
<td>2,000</td>
<td>1</td>
<td>1,953</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>Loading Spaces</td>
<td>-</td>
<td></td>
<td></td>
<td>83,325 asf</td>
</tr>
<tr>
<td>Parking Spaces</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of Building</td>
<td>-</td>
<td></td>
<td></td>
<td>228 ft. to the roof</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(244.5 with parapet)</td>
</tr>
<tr>
<td>Number of Stories</td>
<td>-</td>
<td></td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

Source: EHDD, 2006.

Note:

a. Assignable Square Footage (asf) is area that can be assigned to a specific program use. It does not include circulation space, vertical shafts, or non-programmed support spaces (such as bathrooms, and mechanical or utility rooms), and is measured to the inside face of walls of a room or area.
E. PROJECT APPROVAL REQUIREMENTS

The following agencies, in addition to the District, are expected to use this EIR in their decision-making process. The approvals for which the EIR may be used are listed under each agency.

California Community Colleges Chancellor’s Office

- Award of state funds to develop Lots 9 and 10 of Block 195 as a consolidated Chinatown/North Beach educational center.

Department of Public Works and Department of Parking and Traffic

- Permits for sidewalk and street closures during construction.

This EIR may be used by other public agencies in granting subsequent approvals for the Project.

Prior to acting on the Project, the Board may adopt a resolution exempting the Project from the jurisdiction of the City and County of San Francisco. As currently proposed, the Project does not comply with certain provisions in the City’s Planning Code. Nevertheless, the Project will be discussed in relation to the Planning Code in Section III.A, Land Use, Plans, and Zoning. Because the District does not have criteria for evaluating shadow impacts on public open space or wind effects, the EIR will analyze the Project’s shadow and wind impacts using the criteria in Planning Code Section 295 and Planning Code Section 148, respectively. Section 295 limits new shadow in public open spaces under the jurisdiction of the Recreation and Park Commission. Section 148 addresses wind impacts.
III. ENVIRONMENTAL SETTING IMPACTS, AND MITIGATION

A. LAND USE AND PLANNING

This section provides information on existing land uses in the vicinity of the Project Site and describes the changes to land use that would occur as a result of the Project. As noted in Chapter II, Project Description, the District may exempt the Project from the jurisdiction and approval processes of the City and County of San Francisco. Although the Project may therefore not be required to comply with the Planning Code, this section discusses the Project’s relationship to the applicable provisions of the City’s General Plan Elements and Planning Code.

EXISTING LAND USE

Project Site

The approximately 12,611-square-foot Project Site at the northeast corner of Kearny Street and Washington Street (comprising of Lots 9 and 10) is currently used as a surface parking lot. The District also owns the vacant 6,756-square-foot Lot 5 with frontages on Washington Street and Columbus Avenue that has been excavated to a depth of about 10 feet below street grade. Although Lot 5 is not part of the Project Site, the EIR considers future development of Lot 5 as part of the EIR discussion of Project alternatives, and as part of cumulative conditions for various environmental topics.

The Project block includes a range of uses. Lot 13 was previously the site of the International Hotel and Lot 11, immediately north of the Project Site was the site of the Victory Hotel; both hotels were demolished in 1979. Lots 11 and 13 were approved for the development of the International Hotel Senior Housing building (I-Hotel building) and the St. Mary School, including an underground parking garage. Lot 13 now includes the 15-story I-Hotel building on an air parcel at the southeast corner of Kearny Street and Jackson Street (see Figure 1,
page II-3) and the St. Mary’s Center parking garage. A five-story St. Mary’s School building with institutional and religious uses is approved for Lot 11. Construction of the St. Mary’s School has not yet begun as of the publication of this Draft EIR. The I-Hotel building and parking garage are complete and operational.

The two-story Colombo Building, at the angled corner of Columbus Avenue and Washington Street, contains ground-floor retail with office space above and a basement parking level accessed from Washington Street. The Fong Building, a three-story structure with 21 residential units and ground-floor retail, fronts on Columbus Avenue north of the Colombo Building.

Other uses on the Project block include: a three-story apartment building at 636-640 Washington Street with a design and print shop at street-level; a three-story building with sewing shops, and a restaurant at 650-654 Washington Street. The Jackson Street and Columbus Avenue portions of the block include a clothing store in a two-story building at 535 Jackson Street, a restaurant with apartments above at 533 and 531 Jackson Street, and restaurants with apartments above at 57-59 Columbus Avenue.

Project Vicinity

Land uses in the vicinity of the Project Site include residential, retail, hotel, offices, cultural, institutional, and public parking. Most of the existing buildings in the area have ground-floor retail space and are built to the property lines. Existing office, hotel, and residential uses with ground-floor retail uses are predominant on Washington Street, Kearny Street, Columbus Avenue and on the blocks nearest the Project Site.

The Project block is located at the juncture of four City neighborhoods: the Financial District, Jackson Square, North Beach, and Chinatown. The Financial District boundary is generally definable by the limit of the Planning Code’s Downtown Office District (C-3-O) on the south side of Washington Street across from the Project Site, and by the predominance of high-rise office buildings to the east and south. The boundaries of the other three districts are less defined (these districts are described below). Generally, the Project Site is in a high-density
developed urban area characterized by a mix of office, commercial, retail, and residential uses.

High-rise structures in the Financial District, south and southeast of the Project block, provide office, retail, and some residential uses. The Project block is located directly across Washington Street from the 310-foot-tall Hilton Hotel building, which includes space devoted to the Chinese Cultural Center on the third floor. The 300-foot-tall Montgomery-Washington Tower, a mixed-use (office and residential) building and the 850-foot-tall Transamerica Pyramid office building are southeast of the Project Site on Montgomery and Washington Streets (see Figure 8). Other office buildings in the vicinity of the Project block include the Columbus/Pacific office building at 170 Columbus Avenue, 900 Kearny Street, 801 Montgomery Street, 601 Montgomery Street, 555 Montgomery Street, 505 Montgomery Street, and 855 Montgomery Street.

The Jackson Square Historic District, east of Columbus Avenue and south of Broadway, contains buildings that are the sole survivors of the City’s pre-1906 earthquake central business district and are the only physical reminders of the City’s beginnings as a port and mercantile center. The oldest buildings in the Jackson Square area are those on Montgomery Street, which date back to the early 1850s. The more well-known buildings dating from the 1860s are on Jackson Street, from which the historic district takes its name. The Jackson Square Historic District is a National Register and City-designated Historic District, which is described in more detail in Section III.C, Historic Resources. Small-scale buildings with retail on the ground floor and office uses above are the primary use east of the Project Site, across Columbus Avenue and Montgomery Street. Along Columbus Avenue, some upper floors are offices.

The North Beach community to the north of the Project Site consists primarily of low-rise, multi-family residential above ground-floor retail uses that have historically catered to a large Italian population. The neighborhood is now also home to Chinese and other immigrants who have opened a range of businesses, adding to the varied commercial character of this neighborhood. North Beach remains a thriving area and an important visitor destination.
FIGURE 8: BUILDING HEIGHTS IN PROJECT VICINITY
The Chinatown neighborhood is the west of the Project block and contains a dense mixture of low-rise residential and commercial mixed-use buildings, including tourist-oriented and neighborhood-serving retail shops, restaurants and Chinese import companies. Chinatown-oriented businesses also occupy ground floor retail space on the Project block.

Open Space

The closest public open space to the Project Site is Portsmouth Square (under the jurisdiction of the Recreation and Park Department) across from the Project block on Kearny Street between Washington Street and Clay Street (see Figure 8, p. III.A-4). Portsmouth Square is an actively used park with playground equipment and seating areas, and a public parking garage operated by the Parking Authority. The park also includes a senior center building below a gated pedestrian bridge across Kearny Street that connects the upper level of the park to the Hilton Hotel building and the Chinese Cultural Center. Other nearby open space includes the privately maintained Redwood Park, east of the Project Site at the Transamerica Pyramid; St. Mary’s Square, three blocks south of the Project Site on the west side of Kearny Street; and Maritime Plaza, above the Golden Gateway parking garage between Clay Street and Washington Street, three blocks east of the Project Site. Both St. Mary’s Square and Maritime Plaza are under the jurisdiction of the Recreation and Park Department.

PLANS AND POLICIES

City College Master Plan

The City College Master Plan\(^1\) includes plans for a new Chinatown/ North Beach Campus bordering the Chinatown, North Beach, and Financial Districts. The Master Plan states that the Campus would include classrooms, offices, student activity areas, faculty work areas, and conference rooms. The Master Plan also states that the building would be designed to include an auditorium, multi-purpose space, and an art gallery.

\(^1\) City College of San Francisco Master Plan, adopted 2004.
Under Sustainable Planning and Design, the Master Plan includes the following sustainable Planning Principles: Preserving and Creating Open Space, Minimizing Site Disturbance/Protecting Natural Resources, Providing Alternative Transportation Options, Reducing Waste, Reducing Water Use, Protecting Health and Well-being of Campus/Surrounding Community, Protecting Health and Well-being of Building Occupants, and Educating Staff and Students.

Planning Code Height and Bulk Districts

As noted under Project Approval Requirements, p. II-15, the District may opt to exempt itself from the City’s jurisdiction and approval processes. The Project’s relation to the *Planning Code* is discussed below.

Article 8 of the *Planning Code* establishes Mixed Use Districts to implement the objectives and policies of applicable elements of the *General Plan*, including the *Chinatown Area Plan* that establishes three Chinatown Mixed Use Districts: Section 810.1, Chinatown Community Business (CCB) District; Section 811.1, Chinatown Visitor Retail District (CVRD); and Section 812.1, Chinatown Residential Neighborhood Commercial (CRNC) District.

The Project Site is in the CCB District (see Figure 9, below) which is “intended to protect existing housing, encourage new housing and to accommodate modest expansion of Chinatown business activities as well as street-level retail uses.” ² The controls for the CRNC District, directly adjacent to the Project Site on the Project block, are “designed to preserve neighborhood-serving uses and protect the residential livability of the area.”³ The controls associated with these districts are intended to preserve their essential character by primarily defining allowable uses and restricting building height and bulk. Controls for the CCB are presented in Table 810 of the *Planning Code*. In both districts, demolition of residential apartments is not permitted or subject to the provisions of the Residential Hotel Unit Demolition and Conversion Ordinance (Chapter 41 of the City’s Administrative Code.) Institutional use, such as the Project, is a principal permitted use in the CCB district.

² See *Planning Code* Section 810.1
³ See *Planning Code* Section 812.1
Chinatown Mixed Use Districts
- CRNC: Chinatown Residential Neighborhood Commercial District
- CCB: Chinatown Community Business District

Commercial Districts
- C-2: Community Business District
- C-3-0: Downtown Commercial District: Downtown Office

Public District
- P: Public District

Figure 9: Zoning/Height and Bulk Districts

The Project Site is in a 65-A Height and Bulk District, which would limit buildings to 65 feet (see Figure 9), with the maximum allowable length and diagonal dimensions above 40 feet at 110 and 125 feet, respectively, under the Planning Code.

Buildings exceeding the height of 35 feet would require conditional use approval by the Planning Commission. Under the conditional use process, the Planning Commission can require a 15-foot upper floor setback for new construction to preserve the openness of Chinatown’s streets to the sky and to provide sunlight access to the public sidewalks with a high volume of pedestrian use.

The Planning Code would not require off-street parking for the Project.

San Francisco General Plan

The Urban Design, Community Facilities and Commerce and Industry Elements, along with the Chinatown Area Plan, set forth planning objectives and policies that are relevant and applicable to the use and scale of the Project.

Urban Design Element

This element provides policies with regard to City Pattern, Conservation, Major New Development, and Neighborhood Environment. Objective 1 calls for the “emphasis of the characteristic pattern which gives the city and its neighborhoods an image, a sense of purpose, and a means of orientation.”

Policy 1.3: Recognize that buildings, when seen together, produce a total effect that characterizes the city and its districts.

Buildings, which collectively contribute to the characteristic pattern of the city, are the greatest variable because they are most easily altered by man.
Therefore, the relationships of building forms to one another and to other elements of the city pattern should be moderated so that the effects will be complementary and harmonious.

The general pattern of buildings should emphasize the topographic form of the city and the importance of centers of activity. It should also help to define street areas and other public open spaces. Individual buildings and other structures should stand out prominently in the city pattern only in exceptional circumstances, where they signify the presence of important community facilities and occupy visual focal points that benefit from buildings and structures of such design.

Policy 1.7: Recognize the natural boundaries of districts, and promote connections between districts.

Visually prominent features such as hills, roadways and large groves of trees often identify the edges of districts and neighborhoods. Although these features should not be regarded as barriers to movement from one area to another, they do have the advantage of creating an awareness of districts and neighborhoods within the total city pattern.

The positive effects of natural district boundaries should be emphasized in decisions affecting visually prominent features such as new roadways and large-scale landscaping. At the same time these same types of features can be useful links between districts, and between parks and other public and semi-public facilities. Connections between districts and facilities should be improved, with special attention to the possibilities for landscaped pathways that will provide an alternative to the street system in movement about the city.

Community Facilities Element

Objective 8 states that “public school facilities should be distributed and located in a manner that will enhance their efficient and effective use.”

Policy 8.1: Provide public school facilities for education in accordance with the need for such facilities as defined by the Unified School District and Community College District. Locate such facilities according to the Public School Facilities Plan and, wherever possible, make available for community use.
Commerce and Industry Element

Objective 7 states, “Enhance San Francisco’s position as a national and regional center for governmental, health, and educational services.”

Policy 7.2: Encourage the extension of needed health and educational services, but manage expansion to avoid or minimize disruption of adjacent residential areas.

The continued, controlled expansion of educational and medical institutions is important to the city in the provision of valuable and needed services to residents and employment opportunities. Medical care and hospitals are important in neighborhoods which would otherwise be relatively isolated from treatment facilities. Evening and adult schools provide possibilities for working individuals to extend their vocational or casual interests. These institutions also provide extensive employment opportunities and training opportunities. Institutional growth is also anticipated to create many new jobs for residents in areas of the city other than downtown.

The expansion needs of institutions often conflict with efforts to preserve and protect the scale and character of residential neighborhoods. Large educational and medical institutions attract people from outside a neighborhood, aggravating traffic and parking problems. Institutional buildings tend to be larger in scale and more intensely used than residential buildings which often surround them. In addition, institutional expansion often requires removal of housing and displacement of residents.

To minimize the disruption caused by institutional expansion, the city should continue its policy of reviewing expansion plans. This review examines the needs of adjacent resident areas for housing, on-street parking and safe, quiet streets as well as the needs of the institution. Educational and medical institutions are required to develop and submit master plans to the city prior to any specific expansion request. Such master plans define long-term and short-range development plans of the institution. The early review of institutional development plans will permit exploration of alternate ways to address the needs of the institution in order to minimize potential conflicts with the residential area.

Policy 7.3: Promote the provision of adequate health and educational services to all geographical districts and cultural groups in the city.

The city should actively encourage the decentralization of major institutional facilities to other areas of San Francisco, particularly those presently without adequate services. Vacated school sites and facilities should be examined as a
potential expansion resource. There also exist areas of underused land in the
city in which the physical impact of institutional development would be
acceptable and might even provide the necessary impetus for desired new
community development.

Chinatown Area Plan

The *General Plan* includes 10 area plans. The Project Site is within the Chinatown Area Plan.

Objective 1 of the *Preservation and Conservation Section* calls for the preservation of the
“distinctive urban character, physical environment, and cultural heritage of Chinatown.”

Policy 1.1: Maintain the low-rise scale of Chinatown’s buildings.

Although adjacent to Downtown, Chinatown is not the appropriate setting for
tall buildings. Seventy five percent of the structures in Chinatown are three
stories or less in height. Height districts in the *Planning Code* should be based
on the generalized height plan below. Requiring setbacks for new buildings
above three stories will help achieve a complementary scale.

**Policy 1.2: Promote a building form that harmonizes with the scale of existing
buildings and width of Chinatown’s streets.**

The Chinatown area is primarily composed of small-scaled buildings. Most
existing buildings are quite low and due to the pattern of the lots, many are
relatively short in depth as well. The typical lot size is only 3,500 square feet.
The few large buildings in the area intrude into this fine-scaled texture of
development. Further development along these lines would severely damage the
appearance of this historic part of the city and would also produce deeply
shadowed streets.

Urban design guidelines should be applied to new construction in Chinatown in
order to (1) integrate new buildings into the dominant fine scale of development
characterized by small varied buildings in a manner that does not create sharp
contrasts in scale or significantly alter the texture of the area as viewed from
surrounding areas and (2) maintain the unifying rhythm of facade widths and the
general scale of street walls as viewed from the streets. Generally, buildings
above a height of 40 feet should not exceed a width (measured parallel to the
street) of 50 to 75 feet or a maximum diagonal of 100 feet. As buildings
approach these dimensions, increasingly stronger measures will be required to
minimize the apparent bulk and scale of the project and insure a harmonious fit
with the contextual setting. Larger projects may necessitate division of the
facade into independent designs, changes of height of several floors and setbacks to achieve the desired relationship.

These design controls have been presented as guidelines rather than rigid rules. This is essential given the wide range of sites and situations in which a project may be proposed. The ultimate development potential in a given property is dependent not only on the zoning and height limit by also on the nature of surrounding development. [Emphasis added.]

Policy 1.3: Retain Chinatown’s sunny, wind-free environment.

An old-timer’s expression about weather in Chinatown is that “the fog never comes to Chinatown.” The sunny and wind-free climate is important to the comfort of residents and visitors because most people walk rather than drive in Chinatown. To achieve and protect as much sun as possible on public sidewalk during midday hours, setback requirements are needed for various streets in Chinatown. Retaining lower height buildings reduces the potential increase of wind currents at street level.

Objective 6 of the _Commerce Section_ discusses retaining “Chinatown’s role as a Capital City”

Policy 6.1: Provide incentives for location and expansion of institutions and cultural facilities.

Institutional land use including space for social agencies comprises a significant share of all floor area in Chinatown. Family and District Associations whose roots go back to the first settlement of Chinatown are important agencies in the provision of various support service to their members. There are approximately 140 family and district association in the planning area. There are also a number of health and social service agencies. Public and private health, educational and welfare agencies which provide support services to Chinatown residents should not have to compete with commercial uses for activity space. Limits on commercial floor area should not apply to institutional land uses.

IMPACTS

Significance Criteria

Consistent with CEQA Guidelines Appendix G, the Project would have a significant environmental effect on land use if it would divide an established community. The Project would also have a significant effect if it would conflict with an applicable land use plan, policy, or regulation of an agency with jurisdiction over the Project, adopted for the purpose
of avoiding or mitigating an environmental effect. The San Francisco General Plan, City Planning Code, and the City College Master Plan requirements are discussed below.

Land Use

The Project would alter but would not substantially or adversely change the nature of land uses in the vicinity of the Project Site. The Project would replace a surface parking lot with an educational use housed in 16-story building which would alter the land use, but would not displace any existing retail, office, or residential uses. Existing retail, office, and residential uses, as well as an approved institutional use (the St. Mary’s School), are immediately north of the Project Site. The Project would intensify the institutional uses on the Project block. Due to the mixed-use nature of the Project vicinity, which includes retail, office, and residential activities, the proposed educational use on the Project Site would not be incompatible with, or substantially alter, the mixed-use character of the Project block and vicinity.

In the vicinity of the Project Site there are a number of buildings similar in scale or taller than the Project (see Figure 8, p. III.A-2). In addition, the Project Site is at the eastern border of the established Chinatown community, which generally extends west from the Project Site at least to Powell Street and north to Broadway. The Project would not divide the Chinatown neighborhood because it would be just across the northern edge of the Downtown C-3-O District.

The scale, height and bulk of the Project would relate to other existing development in the vicinity, such as the Hilton Hotel, the Montgomery-Washington Tower, and other high-rise development in the Financial District to the east and southeast. The Project would contrast with the smaller-scale development in Chinatown to the west, as well as existing small-scale uses on the Project block to the east. The Project would be larger in scale than the approved St. Mary’s School to the north and would serve as a transition from the 32-story Hilton Hotel to the 15-story I-Hotel building on the Project block. The scale and design of the Project are analyzed further in Section III.B, Visual Quality.
The Project would change the population of the site. Currently, the only employees on the Project Site are the parking lot attendants, and there is minimal additional foot traffic from persons dropping off and picking up their vehicles. With the Project, there would be an increase in pedestrians going to and from the site throughout the day and evening hours; therefore, the Project would not divide an established community, substantially alter existing land uses, or result in incompatible land uses.

Relationship to Plans and Policies

This discussion of the *City College Master Plan, San Francisco General Plan, and Planning Code* considers policies and regulations applicable to the Project Site and the Project. The CEQA significance criteria state that a project would have a significant adverse impact if it were to conflict with an applicable plan or regulation of an agency with jurisdiction over the project, adopted to mitigate or avoid an environmental effect. The *City College Master Plan* and *San Francisco General Plan* are policy-based documents that address competing interests, creating conflicts among objectives and policies. The Board and other decision makers must balance the relevant objectives and policies of the plans and competing public interests before taking action on the Project to arrive at an informed decision.

City College Master Plan

The Project would be consistent with the relevant *City College Master Plan* policies. As described under the *Other Campus Plans* section, the Project would border the Chinatown, North Beach, and Financial Districts and would include, but not limited to, classrooms, offices, student activity areas, faculty work areas, and conference rooms. The Project would include a library open to the public during normal hours of operation, and multi-purpose space that the District would make available to members of the community for special events.

The Project would also be consistent with the Sustainable Master Planning Principles. The Project would include open space areas. The Project would also minimize site disturbance and protect natural resources by redeveloping a parking lot, rather than converting undeveloped open space to educational use. The Project would include plans designed to promote
alternative transportation and to reduce solid waste and water use. Construction and operation of the Project would be required to adhere to current State Building Code standards designed to protect the public health, welfare and safety of the occupants and the surrounding community during natural disasters, such as a major earthquake.

The Project would be consistent with the City College Master Plan.

San Francisco General Plan

The Project Site is at the confluence of four districts: Chinatown, North Beach, the Financial District and the Jackson Square Historic District. The Project would be generally consistent with Urban Design Element Objective 1, regarding the characteristic pattern which gives the City and its neighborhoods an image, a sense of purpose, and a means of orientation; Policy 1.3, regarding the effects of building design on the character of the City and district when seen together because it is against a backdrop of high-rise buildings to the south and southeast; and Policy 1.7 calls for recognizing the natural boundaries of districts, and the promoting connections between districts.

The design of the Project would be consistent with the overall context of the area (see Chapter II, Project Description). The height, massing and design of the Project would relate to the high-rise office-building character of the Financial District and the proposed three-story base would relate to the older, low-rise neighborhood commercial character of Chinatown and North Beach. Thus, the Project would generally be consistent with the design principles in the Urban Design Element of the San Francisco General Plan. Section III.C, Visual Quality, further discusses the Project design and compatibility with the surrounding area.

The construction of the Project, an educational facility, would support Objective 8 of the Community Facilities Element, which identified a need for a new campus in the Chinatown North Beach area. As noted in Chapter II, Project Description, the Project has been designed to meet the District’s programmatic space need and educational services for the Chinatown and North Beach neighborhoods. Therefore, the Project would be consistent with this objective.
The construction of an educational facility would also be consistent with Objective 7 of the Commerce and Industry Element, because the Project would enhance San Francisco’s position as a national and regional center for educational services.

Chinatown Area Plan. As noted above, the General Plan includes 10 area plans. The Project Site is within the Chinatown Area Plan. Policies 1.1 and 1.2 of Objective 1, (Preservation and Conservation) encourage maintenance of the existing scale of development and low-rise buildings in Chinatown. The proposed building would be a high-rise structure and would appear to conflict with maintenance of the existing low-rise scale of the Chinatown neighborhood. However, due to its location of directly north of the C-3-0 district, the Project would be similar in scale to nearby buildings in the Financial District and would serve as a transition in the south to north direction toward the 15-story I-Hotel building on the Project block.

The Project would be consistent with Policy 1.3, regarding maintenance of Chinatown’s sunny and wind-free environment. As discussed in Section III.H, Wind, the proposed building would have a beneficial effect on wind in the vicinity of the Project Site. As discussed in Section III.G, Shadow, the proposed building would not have a significant effect on the sunlight access to Portsmouth Square or St. Mary’s Square. Section III.G also describes effects on sidewalks, and concludes that the Project would not have substantial adverse effects on sidewalk sunlight conditions.

The Project would also be consistent with Policy 6.1, regarding institutions and cultural facilities. The Project is an educational facility that would serve the Chinatown community.

The Project uses would not directly conflict with relevant elements of the San Francisco General Plan. The San Francisco General Plan is a policy-based document that addresses competing public and private interests. Therefore, it is expected that conflicts among the various objectives and policies will exist. Decision makers balance the relevant objectives and policies of the General Plan and the project under consideration. For the Project, the Board and other decision makers would consider all applicable objectives and policies, as well as other factors, to arrive at an informed decision.
San Francisco Planning Code

The Project would not comply with several Planning Code requirements, and would, under City jurisdiction, require conditional use approvals for exceptions to (1) bulk requirements (Section 271); (2) lot size in excess of 5,000 square feet (Sections 121.3 and 810.11); (3) use size in excess of 5,000 square feet; (4) a street frontage in excess of 50 linear feet (Section 145.3); and (5) height in excess of 35 feet (Section 254). In addition, the Planning Commission may, for a project under City jurisdiction, require a setback above a height of 35 feet to allow for sunlight access to Chinatown sidewalks (Section 132.3).

The Project height (228 feet to the roof) would exceed the Planning Code 65-foot height limit. The Project, at 120 feet in length and 131 feet diagonally above 40 feet, would exceed the 110 foot maximum length and 125 foot maximum diagonal dimensional limitation of the A bulk district. Therefore, the Project would not meet the Planning Code height and bulk requirements. While the Project could deviate from the bulk requirements pursuant to a conditional use application, the height limit is a legislative act. Therefore, neither the Planning Department nor the Planning Commission can grant additional height for the Project.

These non-complying features of the Project would not in themselves result in adverse environmental impacts on land use because the Project would not divide an existing community, nor conflict with the City’s General Plan or the City College Master Plan, adopted for the purpose of avoiding environmental impacts for the reasons discussed above.

Physical impacts related to the size and dimensions of the proposed building are addressed in other sections of this EIR, including visual quality, transportation, shadow, and wind.

Cumulative Land Use Conditions

As noted earlier, the District owns the vacant Lot 5, which is likely to be developed in the future by private developers. Development on Lot 5 by the District would be limited by the 2005 Settlement Agreement for the Colombo Building, which limits the height of any new building thereon to 84 feet, and requires the façade design to include architectural details to
ensure its compatibility with the Colombo Building and other buildings in the Jackson Square Historic District to the east.9

If Lot 5 were developed by a private party, the development would be under the jurisdiction of the City and County; the San Francisco Planning Code would control the development of Lot 5 with no substantial change to the overall land use conditions on the Project block, or in the Project vicinity. Cumulative infill development of this site and other sites in vicinity would not be expected to divide an established community, or create substantial conflicts with the City’s policies and regulations adopted for the purposes of reducing environmental effects. Therefore, the Project would not contribute to significant cumulative land use effects.

B. VISUAL QUALITY

SETTING

This section describes the existing visual characteristics of the Project Site and surroundings and provides a description of the existing physical appearance of the Project Site in relation to views of the existing setting in the vicinity of the Project Site.

Project Site and Vicinity

The Project Site, a surface parking lot at the northeast corner of Washington Street and Kearny Street, is completely paved and has no vegetation on the site, except for five street trees along the sidewalks of Kearny and Washington Street.

The Project Site is at the confluence by four major city districts: North Beach, Chinatown, Jackson Square, and the Financial District. The most intensely developed portion of San Francisco, the Financial District, is southeast of the Project Site. Washington Street forms the northern boundary of the Financial District. The Financial District consists of office buildings and hotels ranging from two stories to 53 stories in height. The major corridors of high-rise buildings are Market Street, Montgomery Street, Sansome Street, Battery Street, California Street, and Sacramento Street. Financial District buildings visible in a longer-range skyline include office towers developed in the 1920s and 1930s and the more recent and generally larger and taller structures developed since the 1960s. The 853-foot-tall Transamerica Pyramid, and the 26-story, 300-foot-tall Montgomery-Washington Tower, are on Montgomery Street east of the project block. The Project Site is directly across Washington Street from the 28-story, 310-foot-tall Hilton Hotel. The recently completed 15-story, 155-foot-tall International Hotel Senior Center building (I-Hotel building) is on the Project Block at Kearny Street and Jackson Street. The five-story St. Mary’s School is approved for construction between the I-Hotel building and the Project. A three-story building abuts the Project Site to the east on Washington Street.
Figure 8, p. III.A-2 shows existing building heights on the project block and the surrounding area.

Lower-scale developments in the older North Beach, Chinatown, and Jackson Square districts adjoin the high-rise buildings in the Financial District. Washington Street includes high-rise buildings southeast of the Washington Street/Kearny Street intersection, and low-rise buildings to the south and west. Kearny Street is characterized by newer office high-rise buildings south of Sacramento Street, and transitions into older, lower-scale development in Chinatown. North Beach, an older area of lower-scale development, is located north of the Project Site. The Colombo Building at Washington Street and Columbus Avenue, together with the Old Transamerica Building on the east side of Columbus Avenue, have traditionally marked the entrance to the North Beach district. The North Beach area primarily consists of low-rise, multifamily residential buildings and retail establishments at street level (see Figure 8, p. III.A-2). Other prominent features visible from the project vicinity include Telegraph Hill and Coit Tower to the north, and buildings of Chinatown and Nob Hill to the west.

The Jackson Square Historic District, bounded by Broadway on the north, Sansome Street on the east, Columbus Avenue on the west, and Washington Street on the south, is to the east of the Project block. This Historic District is developed with predominantly low-rise, brick and masonry buildings dating back to the late 1800s. The Jackson Square Historic District is listed in the National Register of Historic Places, and is also designated as a local historic district in the Planning Code (Article 10, Appendix B). Many of the buildings in the Jackson Square Historic District are listed as individual landmarks, such as the Old Transamerica Building on the east side of Columbus Avenue at Washington Street.

Public open space near the Project Site includes Portsmouth Square, St. Mary’s Square, and Maritime Plaza (see Figure 8, p. III.A-2 in Section III.A, Land Use). All three parks are under the jurisdiction of the Recreation and Park Department. Portsmouth Square at Kearny Street between Washington Street and Clay Street is an actively used park with playground equipment, seating areas, and a senior center below the gated pedestrian bridge across Kearny Street. The pedestrian bridge connects the upper level of the park to the Hilton Hotel building.
and Chinese Cultural Center. Maritime Plaza is three blocks east of the Project Site above the two-story Clay Street Garage, between Washington Street and Clay Street. St. Mary’s Square is three blocks to the south of the Project Site on Kearny Street above the three-story St. Mary’s Square garage. The privately owned Redwood Park maintained as part of the Transamerica Building is east of the Project Site between Washington Street and Clay Street.

Views

Views north and west of the site are characterized by low-rise retail and office buildings. The view north of the Project Site includes the 15-story I-Hotel building in the foreground, and longer-range views include the south slope of Telegraph Hill, with Coit Tower at its peak. To the west are views of primarily low-rise buildings in Chinatown and the east slope of Nob Hill. Views to the southwest across Washington Street focus on Portsmouth Square. Long-range views south and east from the site are blocked by high-rise buildings of the Financial District. Views directly east from the Project Site include older buildings near Columbus Avenue and Washington Street that are part of the Jackson Square Historic District. Long-range views of San Francisco Bay or other natural landmarks are not available from the Project Site. The Project Site is currently not visible from long-range viewpoints to the west and south (Twin Peaks and Potrero Hill), nor from Nob Hill and Telegraph Hill because of intervening structures. The existing site is generally not visible from locations beyond the buildings and streets in the immediate project vicinity.

Views of the Project Site identified in Figure 10 are shown in Figures 11 through 14.

Figure 11 is an existing view at Washington Street and Columbus Avenue. The Project Site is not visible due to the intervening structures along Washington Street. Figure 12 illustrates the view from Portsmouth Square. Landscaped areas of Portsmouth Square appear in the foreground, and short-range features that can be seen include the various two- to four-story buildings north of Washington Street and the 15-story I-Hotel building in the background. Figure 13 is a view from Kearny Street between Commercial Street and Clay Street that includes two and three-story buildings in the foreground, the Hilton Hotel, and the 15-story

NOTE: Figure 13 Viewpoint is Coit Tower nine blocks north of the project site.

CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

FIGURE 10: VIEWPOINT LOCATIONS
Existing view facing west from Washington Street at Columbus Avenue

View Facing West from Washington Street at Columbus Avenue with Project
(New structure on lot 5 is illustrative of cumulative development and is not proposed as part of the Project)

Existing View Facing North from Kearny Street between Clay Street and Commercial Street

View Facing North from Kearny Street between Clay Street and Commercial Street with Project

Figure 14: View East from Washington Street at Walter U Lum Place

Existing View Facing East from Washington Street at Walter U Lum Place

View Facing East from Washington Street at Walter U Lum Place with Project

Source: Square One Productions, 2006.
View from Coit Tower: Existing

View from Coit Tower: With Project

SOURCE: Esherick Homsey Dodge & Davis/Barcelon + Jang.

CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

FIGURE 15: VIEW FROM TELEGRAPH HILL
I-Hotel building in the background. Telegraph Hill is seen in the background. Figure 14 is a view from the southwest corner of Washington Street and Walter U. Lum Place near the west side of Portsmouth Square. The views include Portsmouth Square and three- to five-story buildings in the foreground, and Financial District high-rise buildings in the background.

IMPACTS

Significance Criteria

The Project would result in significant adverse visual quality impacts if it would:

- Substantially degrade or obstruct scenic views from public areas. For the purpose of this analysis, public views are scenic views from existing parks, plazas, major roadways or other public areas.
- Substantially degrade the existing visual character or quality of the site and its surroundings and have a substantial, demonstrable negative aesthetic effect.
- Create a new source of substantial light or glare that would adversely affect day or nighttime views or use of the area.

Project Effects

The Project would replace the surface parking lot on Lots 9 and 10 with a 228-foot-tall, 16-story building (244.5 feet tall with the mechanical penthouse screen). The District owns Lot 5, on Washington Street between Kearny Street and Columbus Avenue, but has no plans to develop this site. Lot 5 could be developed in the future by the District or a third party. Therefore, the visual simulations in Figures 10 through 14 include both the 16-story building as the Project and a building on Lot 5 to disclose potential cumulative effects.

Development on Lot 5 by City College would be limited to 84 feet in height by the 2005 Settlement Agreement for the Colombo Building. Furthermore, the agreement requires development on Lot 5 to include architectural details to ensure compatibility with the Colombo Building and the historic buildings within Jackson Square. However, development on Lot 5 by a private party would be subject to Planning Code requirements, including a height limit of 65 feet. Lot 5 will likely be sold by the District. Nevertheless, to be conservative, an 84-foot
The Project building would consist of two distinct elements. The three-story base of the building would be about 51.5 feet to the top of railing. The base would be rectangular with a glass curtain wall facing the streets. The fourth floor would be recessed from the tower forming a waist to emphasize the tower. The fifth floor through the top of the mechanical penthouse, from about 58.5 feet to 244.5 feet, would have a curvilinear glass curtain wall (see Figure 4 on p. II-10 in the Project Description). The ground floor would have a 18.5-foot floor-to-floor height, and the rest of the floors would have a 13.5-foot floor-to-floor height.

The proposed building would be taller than many surrounding structures, including the 15-story, approximately 155-foot-tall I-Hotel building at Kearny Street and Jackson Street. Most buildings in the vicinity are up to four or five stories tall. The building would be shorter than the 28-story, 310-foot-tall Hilton Hotel building across Washington Street, the 26-story 300-foot-tall Montgomery-Washington Tower across Washington Street, and the 853-foot Transamerica Building (including the 212-foot spire) a block east of the Project Site.

Views

The photo-simulations presented in Figures 11 through 15 include the Project with the existing setting and, where visible, a massing simulation of a five-story building on Lot 5.

View Facing West from Washington Street

When viewed from Washington Street and Columbus Avenue, the Project would replace an existing surface parking lot that is not currently visible (see Figure 11). The Project would not replace views of existing buildings south of the Project Site, but would be prominent in the background as it would be about 13 to 14 stories taller than the surrounding two- to three-story structures to the east on Washington Street. From this location, the Project building height would be accentuated due to the rise of elevation west along Washington Street and would be prominent in its location outside the Financial District’s mid- and high-rise building fabric.
The Project would have a distinct and different character than the low- and high-rise buildings east and south of the Project block and would also be distinctive because of its curvilinear glass tower.

Cumulatively, because Lot 5 would likely be developed by a private party pursuant to the Planning Code requirements, the Lot 5 building would be about two to three stories taller than the surrounding structure, but substantially shorter than the I-Hotel building. Thus, it would be generally consistent with the surrounding area and would not result in a prominent change in conditions. The future Lot 5 building would rise above neighboring buildings and would block about a third of the 15-story I-Hotel building.

View from Portsmouth Square

Figure 12 illustrates the view of the Project from Portsmouth Square. Paved and landscaped areas of Portsmouth Square appear in the foreground, a portion of the Hilton Hotel tower is visible to the east; the 15-story I-Hotel building appears in the background. The most prominent change in views would be the amount of open sky to the east which would be obstructed by the height and bulk of the Project. The figures also illustrate that the Project would block a small portion of the I-Hotel building and would be noticeably shorter than the Hilton Hotel. Furthermore, the Project’s curvilinear glass tower would contrast with other building in the area, including the I-Hotel building and Hilton Hotel.

Cumulatively, a new building on Lot 5 would not be prominently visible from this location, but would appear to the north of the Hilton Hotel.

View North from Kearny Street

Figure 13 represents views of the Project from Kearny Street between Commercial Street and Clay Street. There are two- and three-story buildings in the foreground, the approximately 28-story Hilton hotel to the east, and the 15-story I-Hotel building in the background. The proposed building would block views of most of the I-Hotel building and a large portion of open sky between the I-Hotel building and the Hilton Hotel. From other locations south of Sacramento Street in the Kearny Street corridor, the new building would block views to the
north of Telegraph Hill and Coit Tower. However, views of Telegraph Hill and Coit Tower from north of Sacramento Street in the Kearny Street corridor are already blocked by the I-Hotel building.

When viewed from Kearny Street to the south, the taller Hilton Hotel would be in the foreground. With the Hilton Hotel tower in the foreground in views from Kearny Street, the proposed Project building would be generally consistent with the area. However, the Project’s glass curvilinear tower would represent a new design element among the surrounding rectangular high-rise towers.

Cumulatively, a future building on Lot 5 would not be visible from Kearny Street.

View East from Washington Street

Figure 14 shows views from the southwest corner of Washington Street and Walter U. Lum Place. Views include a portion of Portsmouth Square to the right, two- to five-story buildings in the left foreground, and Financial District high-rise buildings in the background. The Project would partially block views of distant buildings, such as the US Custom House at Washington Street and Sansome Street; the most noticeable effects would be blockage of the open sky. The proposed building would introduce a high-rise structure on Washington Street, which would be consistent in height and bulk with Financial District buildings, but would introduce a distinctly shaped tower.

See the discussion below under Visual Character regarding the visual relationship between the Project and the historic buildings in Jackson Square and the Columbo building.

Cumulatively, a new building on Lot 5 would be visible, but not distinct because it would relate to the adjacent two- to four-story buildings, as well as the taller financial district buildings in the background.
View of Project Site from Telegraph Hill

Figure 15 shows views from the south of Telegraph Hill towards the Project Site. Views include the low-rise buildings in the Telegraph Hill area to the south in the foreground, the high-rise buildings in the Financial District to the southeast of the Telegraph Hill area, and lower-rise buildings in North Beach and Chinatown areas to the southeast of Telegraph Hill. The Project would be seen in the foreground of other buildings in the Financial District. Since the buildings south and southeast of the Project Site rise above the Project, the Project does not substantially alter the existing view of the project vicinity from Telegraph Hill.

Cumulatively, a future building on Lot 5 would be visible from this location on Telegraph Hill, against the background of taller buildings south of Washington Street.

Conclusions

Visual Character

The Project would introduce a new building element to the Chinatown/North Beach area. The Financial District is characterized by mid-rise and high-rise buildings typically built to the property line with a range of materials, design, and massing. The Chinatown and North Beach areas are characterized by smaller structures, also with a range of materials and design. The proposed building would introduce a new high-rise structure with a distinctively shaped tower at Washington Street and Kearny Street. There is no quantitative threshold for determining the visual quality impacts of a project because the standards are, to an extent, based on subjective judgment. The proposed building would be considered an infill development that would be generally consistent in scale to the 15-story, approximately 155-foot-tall I-Hotel building, 28-story, the 310-foot-tall Hilton Hotel, the 26-story, 300-foot-tall Montgomery-Washington Tower, and other nearby high-rises in the Financial District.

With regards to Project design, a Design Review Committee has been created for the Project, as recommended in the Draft EIR prepared for the 2004 City College Master Plan. The Design Review Committee would review the Project design prior to the EIR certification and hold follow-up review sessions to ensure that the design goals for the Project are
accomplished. Additionally, members of the community were invited to two design charrettes to provide design input on the Project on April 11 and April 19, 2007.

The Project would be north of Washington Street, the border between the high-rise buildings in the Financial District to the south and the low- and mid-rise buildings in the Chinatown and North Beach neighborhoods to the north. The character of the various neighborhoods is reflected in the existing Planning Code Height and Bulk District designations, wherein height limit south of Washington Street is 200 feet, and the height limit of Project site and vicinity north of Washington Street is 65 feet. (see Section III., Land Use and Planning, for further discussion of height limits.) The construction of the Project north of Washington Street would alter the planning boundaries in the area and thus could affect the existing visual character of the immediate area around the Project Site, as discussed below.

The Project, as a 244.5-foot building north of this border, would affect the visual setting of nearby architectural resources, including the Columbo Building and the Jackson Square Historic District. The Columbo Building, a low-rise structure, (see Section III.C. Historic Resources, p. III.C-1) would not be directly affected by the Project because the Columbo Building and Project Site are separated by existing low-rise buildings. However, the Project would alter the character of the area by adding a second high-rise building on the Project block (see Figure 11, p. III.B-5). While the recently completed I-Hotel building introduced a 15-story high-rise building on the Project block, the proposed 16-story Project would further change the character of the block. Views from the east towards the Project Site include the Columbo Building. However, as seen in Figure 11, this substantial change in the context could be considered a significant adverse visual quality effect. As discussed in Section III.C, Historic Resources, the Project would not affect the Columbo Building directly, and its continued eligibility as a historic resource would not be impaired.

The Jackson Square Historic District, generally bounded by Columbus Avenue, Washington Street, Sansome Street, and lots along the north side of Pacific Avenue, is not adjacent to the Project Site, and is separated from the site by existing mid-rise buildings. Views towards the

1 2004 City College Master Plan Draft EIR, page 4.3-9.
Project Site from Jackson Square northeast of the Project site already include high-rise buildings in the Financial District south of Washington Street (see Figures 16 and 17). Figure 17, a view south on Columbus Avenue, illustrates the difference in scale between the Financial District to the south, and Chinatown, Jackson Square, and North Beach. The Project would add to the views of high-rise buildings, but would be considered a less-than-significant adverse visual effect. Views towards the site from streets within the historic district, such as Jackson Street between Montgomery Street and Sansome Street, as shown in Figure 17, consist primarily of nearby buildings in the historic district, with views of high-rise buildings south of Washington Street seen above the older buildings. The Project would be visible in these views. The Project would not change the pattern of the contrast between the low-scale Jackson Square Historic District and high-rise buildings to the south; this would be considered a less-than-significant adverse change in the visual context of the historic district.

The Old Transamerica Building at 4 Columbus Avenue, on the east side of Columbus Street at Washington Street, is within the Jackson Square Historic District and is City Landmark No 52. The visual context of that building is primarily views north from the intersection of Montgomery Street, Columbus Avenue, and Washington Street. Views of the Project Site to the west near Montgomery Street and Washington Street would have the Old Transamerica Building in the foreground, but this would not substantially change the visual context of this historic building. Overall, the introduction of the Project near existing low- and mid-rise buildings seen from Jackson Square would not have a substantial adverse effect on the visual setting of that historic district.

While the Project would not physically impact any historic resources described above, the Project would affect the visual character of the area around the Columbo Building. Therefore, the Project could have a potential significant impact on visual character. As there are no mitigation measures that could reduce this impact, this impact is considered significant and unavoidable.
FIGURE 16: VIEW TOWARDS PROJECT SITE FROM COLUMBUS AVENUE

FIGURE 17: VIEW TOWARDS PROJECT SITE FROM JACKSON STREET BETWEEN MONTGOMERY STREET AND SANSOME STREET

Section V, Alternatives, analyzes alternatives to the Project that would reduce or avoid this impact.

Views

No views of hills or open space from local parks, major roadways, or other public areas would be obstructed by the Project. The Project would noticeably change views from Portsmouth Square looking to the north and northeast, where views currently consist of lower-scale buildings.

From Telegraph Hill and Coit Tower to the north, the Project would be visible against the background of high-rise buildings in the Financial District. The curvilinear façade would be distinctive compared to other towers, but would not necessarily have a negative aesthetic impact.

As shown in Figure 12, p. B-6, the Project would alter views of low-rise areas on the Project block as seen to the northeast from Portsmouth Square. Figure 14, p. B-8, a view directly east from the northwest corner of Portsmouth Square also shows the change in views on the Washington Street frontage of the Project block. This change in views from public open space would be considered a substantial adverse change. The Project would have a significant adverse effect on views from a public area.

The 16-story Project would be a prominent element replacing a vacant site near generally low-rise developments directly east and west of the Project Site, and would result in a noticeable change in views from some nearby vantage points. As seen in Figure 13, p. B-7, some views of Telegraph Hill and Coit Tower looking north along Kearny Street between Sacramento Street and California Street would also be impaired by the building. However, views of Telegraph Hill and Coit Tower from Kearny Street closer to the Project Site would not be altered because they are already blocked by the existing 15-story I-Hotel building. Views of Telegraph Hill and Coit Tower from Kearny Street south of Sacramento Street are already blocked by the existing 28-story Hilton Hotel. Therefore, the Project would only alter views of Coit Tower for one block along Kearny Street and would not be considered a substantial
change in views. Therefore, the Project would result in a less than significant impact on views of hills or open space.

Chapter V, Alternatives discusses a project design that would be approximately 65 feet tall that would reduce the adverse impacts on views.

Light and Glare

The proposed building would introduce a new source of light in the area around the Project Site. The building would be lit while classes were in session through 9:00 p.m. from Monday through Thursday and through 5:00 p.m. on Friday and Saturday. The street-level entrance and lobby would be lit in evening hours until 5:00 p.m. or 9:00 p.m. These would also be typical urban lighting conditions.

There is already a substantial amount of existing lighting conditions in the vicinity typical for an urban area. Office buildings, such as the Montgomery-Washington Tower with residential units above, are lit during regular business hours and some offices remain lit after regular hours. Residential buildings, such as the I-Hotel building and the units in the Montgomery-Washington Tower, are lit throughout the evening as the occupants choose. The Hilton Hotel building includes similar lighting effects; lights remain on until the guests choose to turn them off, generally at various times throughout the evening and late night. Additionally, the Hilton Hotel has a large, red “Hilton Hotel” sign near the top of north face of the 28-story building that is lit throughout the night. The Project would thus introduce light typical of office uses to an area that is already lit by office and residential uses. Therefore, the Project would not result in adverse lighting impacts.

Non-reflective glass would be used. Therefore, the Project would not have adverse glare impacts.

Cumulative

Cumulative visual quality changes in the vicinity would include the Project, plus a potential 65-foot-high structure on Lot 5 developed by a private entity, which would be similar in scale
to or two to three stories higher than the adjacent buildings. The cumulative visual quality effects of a 65-foot building on Lot 5 plus the Project would not be substantially different from the effects of the Project. The cumulative changes with assumed development of Lot 5 are also discussed above for specific view impacts.

Development on Lot 5 by the District would be limited by the 2005 Settlement Agreement for the Colombo Building to 84 feet and seven stories, and requires the façade design to include architectural details to ensure its compatibility with the Colombo Building and the buildings in the Jackson Square Historic District to the east. While an 84-foot structure would be taller than adjacent buildings, it would be within the general scale of the Project block and Project vicinity. The structure would rise about four to five floors above the adjacent two- and three-buildings and would be lower than the 15-story I-Hotel building at the southeast corner of Kearny Street and Jackson Street and the Project. Because design of the 84-foot building would be required to be compatible with the design of the Colombo Building, development on Lot 5 by the District would also not adversely affect the visual quality impacts of the Project vicinity.

Therefore, the Project plus development of Lot 5 would not result in significant cumulative visual quality impacts.

Section V, Alternatives, reviews effects of the potential development of Lot 5 as part of two-building Project alternatives.
C. HISTORIC RESOURCES

This chapter summarizes the information presented in the Archaeological Research Design and Treatment Plan (ARD/TP) for the Project prepared by Archeo-Tec in June 2006, as well as the information in the 1998 EIR, which evaluated the historical, architectural, and cultural resources for lots near the Project Site. The Project would not demolish existing buildings; thus, historic architectural resources are briefly discussed and this section focuses on archaeological resources.

ENVIRONMENTAL SETTING

Project Site

Architectural and Historic Resources

There are no buildings on the Project Site, a 12,611-square-foot surface parking lot.

As discussed in the Introduction, the project analyzed in the 1998 EIR included new construction on Lots 4, 5, and 12 in the Project Block that would have required the demolition of the Columbo Building and the Fong Building. The District has sold the Fong Building. The Columbo Building, at the corner of Washington Street and Columbus Avenue on the Project block, is eligible for listing on the National Register of Historic Places.

According to the 1998 EIR, about 15 buildings within a one-block radius of the Project Site are rated on the 1976 Department of City Planning Architectural Inventory. Seventeen nearby buildings are City Landmarks, including the Old Transamerica Building on the angled corner between Columbus Avenue and Montgomery Street at Washington Street.

The Jackson Square Historic District, located east of the Project block, is bounded on the west by Columbus Avenue, on the east by Sansome Street, on the south by Washington Street, and extends nearly as far as Broadway on the north. The Jackson Square Historic District was placed on the National Register of Historic Places on November 18, 1971 and designated a City Historic District on August 9, 1972.
In 1985, the San Francisco Landmarks Preservation Advisory Board (LPAB) considered a Chinatown Historic District that included the lots across Kearny Street from the Project block. The proposed historic district was approved by the LPAB but was not acted on by the City Planning Commission or the Board of Supervisors. The Project block is not within the boundaries of the proposed district.

Archaeological Resources

Previous Archaeological Studies

Numerous archaeological studies have been conducted in the vicinity of the Project. The following summary presents historic resources found near the Project Site according to the Northwest Information Center (NWIC) archival search. As discussed further under “Historical Context,” the Project is located in the earliest developed area in San Francisco, dating from the Gold Rush and later; thus, the Project Site and vicinity are considered archeologically sensitive.

Architectural remnants of the original International Hotel, built in 1854, were excavated in 1985; structural remains of a residence and carpentry shop were uncovered underneath the hotel, including a cast assemblage of tools and hardware dating back to 1849. In 1987, pre-construction testing was performed on Lot 5. No historic period deposits of significance were discovered. In 1996, a data recovery program, based on the 1987 pre-construction testing for Lot 5, was conducted within the Project block. A large Gold Rush deposit was discovered underneath the hotel.

The Niantic, a former whaling vessel abandoned along the 1849 shoreline, is a designated historic site (CA-SFR-81H) at the northwest corner of Clay Street and Sansome Street, about three blocks east of the Project Site. The Niantic was a warehouse and storeship following its abandonment and was eventually surrounded by fill. The portion above the fill burned in 1851, after which the Niantic Hotel was built on its remains. Excavations in 1978 resulted in the recovery of gold rush era artifacts, including parts of the original ship.
In addition, historic deposits dating from the Gold Rush to the early 20th Century have been identified for at least six sites in a two- to four-block radius of the Project Site.

Archaeological Research Design and Treatment Plan

Archeo-Tec, Inc. prepared an Archaeological Research Design (ARD), an extensive archival review of the history of the Project Site from the prehistoric period to the present, including a review of archaeological investigations conducted for sites in the vicinity of the Project Site. In addition to archaeological reports and records on file at the Northwest Information Center at Sonoma State, Archeo-Tec consulted block books, city directories, historic maps, newspaper archives, and census data, along with research at a number of institutions.\(^1\)

Archeo-Tec also contacted the Native American Heritage Commission (NAHC) to request a search of the Sacred Land File. A Sacred Land File search did not indicate the presence of Native American cultural resources on the Project Site.

The Treatment Plan (TP) includes an Archaeological Testing Plan, which details Project impacts and construction methods and recommends pre-construction testing, construction demolition monitoring, and monitoring of construction excavation. The TP also provides an Archaeological Data Recovery Plan as well as a preliminary evaluation of potential eligibility for the California Register of Historical Resources (California Register).

Historical Context

The ARD discusses the historical context of the Project Site as defined by three broad historical periods: the Spanish, Mexican, and Early American Period (1776-1848); the California Gold Rush Era (1849-1857); and the Late 19th Century (1858-1906) and 20th Century.

Spanish, Mexican, and Early American Period (1776-1848). From the founding of Mission Dolores and the Presidio in 1776 through the beginnings of the village of Yerba Buena in

\(^1\) Archeological Research Design and Treatment Plan: City College of San Francisco Chinatown/North Beach Campus, Archeo-Tec, Inc. June 2006
1835, it appears unlikely that there was any systematic occupation or use of the Project Site and its immediate surroundings. However, infrequent economic or cultural activities associated with Mission Dolores or various ranches scattered around the region may have brought people to the Project Site. The first firm archival evidence of any development or systematic use of the Project Site and surroundings is from 1839 or 1840, when John C. Davis erected a single-story wood-frame house on the north side of Washington Street between Montgomery Street and Kearny Street. In 1844, a wooden bridge was built across the Jackson Street Lagoon along the lines of the present day Montgomery Street. Also in 1844, the California state government established an adobe customs house on the Plaza in the center of town, now known as Portsmouth Square. In 1846, Captain John B. Montgomery of the U.S. Ship Portsmouth, which had been stationed in Yerba Buena cove, led his men to shore and declared Yerba Buena under U.S. control. The name was changed to San Francisco in 1847, at which time the area, including the Project Site, underwent rapid development.

The California Gold Rush Era (1849-1857). Prior to the Gold Rush in 1849, approximately 200 individuals were permanently settled in San Francisco. By the end of the year, approximately 8,000 to 25,000 individuals had settled in San Francisco (according to different sources). At the beginning of the Gold Rush, the Project Site lay just north of the City’s growing central business district; throughout 1849, a great deal of development took place on and around the Project Site. Between the constant flow of development and redevelopment, and the six major fires between 1849 and 1851 (four of which hit the Project Site), it is difficult to recount past developments that were specific to the Project Site. By the middle of 1850, the Project Site and surroundings had taken on a distinctly commercial character.

Late 19th Century (1858-1906) and 20th Century. The 1857/1859 U.S. Coast and Geodetic Survey Maps indicate that the Project Site and surroundings were densely built. During the latter part of the 19th century, the Project block was covered with substantial multi-story commercial buildings. The 1906 Earthquake and Fire cleared the Project Site; by 1913, the Project block was rebuilt with commercial structures in a different configuration than before (according to 1913 maps). The 1949 and 1950 maps depict little change from 1913. A 1962 photograph from the San Francisco Library shows a three-story structure occupying the
Project Site. The San Francisco Office of the Assessor parcel map shows that Lot 10 has been a parking lot since 1974.\(^2\) Both Lots 9 and 10 currently consist of a surface parking lot.

Based on the site history and because archaeological resources (such as Native American cultural deposits and human remains, in addition to commercial and domestic refuse and architecture from the Yerba Buena era, Gold Rush, and later 19th century) have been found in proximity to the Project Site, the site may contain archaeological resources.

Regulatory Setting

California Register of Historical Resources

The California Register is an authoritative listing of the State’s significant historical and archaeological resources. It includes buildings and structures formally determined eligible and listed through procedures adopted by the State Historic Preservation Officer (SHPO). Any resource listed in or formally determined eligible for the National Register of Historic Places is automatically listed in the California Register, pursuant to Section 4851(a) of the Public Resources Code.

For purposes of listing on the California Register, a “historical resource” includes, but is not limited to, “any object, building, structure, site area or place which is historically or archaeologically significant, or is significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military or cultural annals of California” and which meets the criteria for listing. A historical resource of local, State or national significance may be eligible for listing in the California Register if it satisfies one or more of the following criteria:

1. It is associated with events that have made a significant contribution to the broad patterns of local or regional history, or the cultural heritage of California or the United States; or

2. It is associated with the lives of persons important to local, California, or national history; or

\(^2\) Treadwell & Rollo, Phase I Environmental Assessment City College Chinatown/North Beach Lots 9 and 10 of Assessor’s Block 195, San Francisco, California, dated May 4, 2005.
III. Environmental Setting and Impacts
C. Historic Resources

3. It embodies the distinctive characteristics of a type, period, region, or method or construction, or represents the work of a master, or possesses high artistic values; or

4. It had yielded, or has the potential to yield, information important to the prehistory or history of the local area, California, or the nation.

All resources nominated for listing in the California Register must have integrity, which is the authenticity of an historical resource’s physical identity evidenced by the survival of characteristics that existed during the resource’s period of significance. Resources, therefore, must retain enough of their historic character or appearance to be recognizable as historical resources and to convey the reasons for their significance. Integrity is evaluated with regard to the retention of location, design, setting, materials, workmanship, feeling and association. It must also be judged with reference to the particular criteria under which a resource is proposed for nomination.

IMPACTS

Significance Criteria

A project would have a significant environmental impact with regard to historic or archeological resources if it would substantial disrupt or substantially adversely affect a unique archaeological resource or a property of historic significance, or it would cause a substantial adverse change in the significance of a historical resource.

As defined in CEQA Guidelines Section 15064.5, “Historic Resources” include the following:

1) A resource listed in, or determined to be eligible by the State Historical Resources Commission, for listing in the California Register of Historical Resources (Pub. Res. Code, § 5024.1, Title 14 CCR, Section 4850 et seq.).

2) A resource included in a local register of historical resources, as defined in section 5020.1(k) of the Public Resources Code or identified as significant in an historical resource survey meeting the requirements section 5024.1(g) of the Public Resources Code, shall be presumed to be historically or culturally significant. Public agencies must treat any such resource as significant unless the preponderance of evidence demonstrates that it is not historically or culturally significant.

3) Any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural,
III. Environmental Setting and Impacts
C. Historic Resources

engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California may be considered to be an historical resource, provided the lead agency’s determination is supported by substantial evidence in light of the whole record. Generally, a resource shall be considered by the lead agency to be “historically significant” if the resource meets the criteria for listing on the California Register of Historical Resources (Pub. Res. Code, § 5024.1, Title 14 CCR, Section 4852) including the following:

(A) Is associated with events that have made a significant contribution to the broad patterns of California’s history and cultural heritage;

(B) Is associated with the lives of persons important in our past;

(C) Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or

(D) Has yielded, or may be likely to yield, information important in prehistory or history.

The fact that a resource is not listed in, or determined to be eligible for listing in the California Register of Historical Resources, not included in a local register of historical resources (pursuant to section 5020.1(k) of the Public Resources Code), or identified in an historical resources survey (meeting the criteria in section 5024.1(g) of the Public Resources Code) does not preclude a lead agency from determining that the resource may be an historical resource as defined in Public Resources Code sections 5020.1(j) or 5024.1.

“Unique archeological resource” means an archaeological artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

(1) Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information;

(2) Has a special and particular quality such as being the oldest of its type or the best available example of its type; or

(3) Is directly associated with a scientifically recognized important prehistoric or historic event or person.
III. Environmental Setting and Impacts
C. Historic Resources

Under CEQA Section 15064.5, “generally, a project that follows the Secretary of the Interior’s Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings or the Secretary of the Interior’s Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings shall be considered as mitigated to a level of less than a significant impact on the historical resource.”

PROJECT EFFECTS

Historic Architectural Resources

The Project on Lots 9 and 10 would not demolish any structures, nor would it affect structures within the existing Jackson Square Historic District to the east of the site, nor within the proposed Chinatown Historic District to the west, nor adversely affect the eligibility of those districts as historic resources. The Project would change the visual setting on the west end of the Project block, and, as discussed in Section III.B Visual Quality, p. III.B-15 to III.B-16, these changes would result in significant adverse impacts on visual quality. The Project would not physically affect the Columbo Building; therefore, the Project would not impair the building’s continued eligibility for listing on the National Register of Historic Places. The Project’s effect on the visual setting of the Jackson Square Historic District would not physically change the resources in the district. The Project would therefore not impair the continued listing of the Jackson Square Historic District on the National Register, nor its listing as a local landmark district. Therefore, the Project would result in no significant adverse impacts on historic architectural resources.

Archaeological Resources

Development on Lots 9 and 10 would include one basement level requiring excavation of 16 feet below the present ground surface. The ARD evaluated a preliminary design for the Project which would have included four subsurface floors, and a foundation and excavation of 49 feet below the ground surface. As the Project would only include excavation to 16 feet, the ARD presents conservatively overstated determinations of potential Project impacts.
It is not known whether significant archaeological resources exist at the Project Site. Since archaeological resources have been found in proximity to the Project Site, it is reasonable to presume that the Project Site may contain such resources. Excavation activities during demolition and construction may disturb previously unidentified cultural resources.

The following archeological resources may be encountered on the Project Site:

- **Prehistoric Native American Cultural Deposits/Human Remains** based on nearby prehistoric archaeological sites.
- **Yerba Buena-era Commercial/Domestic Refuse and Architecture** based on historic maps and accounts of commercial activity in the vicinity of the Project Site, as well as proximity to John C. Davis domicile.
- **Gold Rush Commercial/Domestic Refuse and Architecture** based on historic maps and accounts of commercial activity in the vicinity of the Project Site.
- **Later 19th Century Commercial/Domestic Refuse and Architecture/Earthquake Rubble**, based on Sanborn maps; saloons, stores, and factories listed in City directories and in the U.S. census.

Therefore, the Project would have a potentially significant impact on cultural resources at the site. Implementation of Mitigation Measure C-1, below, would ensure that the Project would have a less-than-significant effect on archaeological resources.

MITIGATION MEASURES

Based on a reasonable presumption that archaeological and historic resources may be present within the Project Site, the following measures shall be undertaken to avoid any significant adverse effect from the Project on buried or submerged historical resources.

Mitigation Measure C-1: Archaeological and Historic Resources. The Project Sponsor shall retain the services of a qualified archaeological consultant having expertise in California prehistoric and urban historical archaeology. The archaeological consultant shall implement the Archeological Research Design and Treatment Plan (ARD/TP). The consultant shall conduct an archaeological monitoring and/or data recovery program. This will ensure conservation of archeological and historic resources encountered on the Project Site.
Archaeological Testing Program. The archaeological consultant shall prepare final archaeological testing plan (ATP). The archaeological testing program shall be conducted in accordance with the approved ATP. The purpose of the archaeological testing program would be to (1) determine the extent possible the presence or absence of archaeological resources, (2) identify such resources, and (3) to evaluate whether any archaeological resource encountered on the site constitutes an historical resource under CEQA. The ATP shall identify the property types of the archaeological resource(s) that could be adversely affected by the Project, the testing method to be used, and the locations recommended for testing.

If the District and the archaeological consultant determine that a significant archaeological resource is present and that the resource could be adversely affected by the Project, one of the following measures would be taken in order to avoid any substantial adverse change in the significance of the resource:

- The Project shall be redesigned so as to avoid any adverse effect on the significant archaeological resource; or
- A data recovery program shall be implemented, unless the District determines that the archaeological resource is of greater interpretive than research significance and that interpretive use of the resource is feasible.

Archaeological Monitoring Program. The archaeological monitoring program shall include the following:

- The archaeological consultant and District shall meet and consult on the scope of the AMP reasonably prior to any Project-related soils disturbing activities commencing. The District in consultation with the archaeological consultant shall determine what Project activities shall be archaeologically monitored. In most cases, any soils-disturbing activities, such as demolition, foundation removal, excavation, grading, utilities installation, foundation work, driving of piles (foundation, shoring, etc.), site remediation, etc., shall require archaeological monitoring because of the risk these activities pose to potential logical resources and to their depositional context;
- The archaeological consultant shall train all Project contractors in identifying the evidence of the expected resource(s) and the appropriate protocol in the event of discovery of an apparent archaeological resource;
The archaeological monitor(s) shall be present regularly on the Project Site until the District has, in consultation with Project archaeological consultant, determined that further Project construction activities could have no effects on significant archaeological deposits;

- The archaeological monitor shall record and collect soil samples and artifactual/ecofactual material as warranted for analysis;

- If an intact archaeological deposit is encountered, all soils-disturbing activities in the vicinity of the deposit shall cease. The archaeological monitor shall be empowered to temporarily redirect demolition/excavation/pile driving/construction activities and equipment until the deposit is evaluated. If in the case of pile driving activity (foundation, shoring, etc.), the archaeological monitor has cause to believe that the pile driving activity may affect an archaeological resource, the pile driving activity shall be terminated until an appropriate evaluation of the resource has been made. The archaeological consultant shall immediately notify the District of the encountered archaeological deposit. The archaeological consultant shall make a reasonable effort to assess the identity, integrity, and significance of the encountered archaeological deposit.

Whether or not significant archaeological resources are encountered, the archaeological consultant shall submit a written report of the findings of the monitoring program to the District.

Archaeological Data Recovery. Archaeological data recovery shall be conducted in accordance with the archaeological data recovery plan (ADRP). Data recovery, in general, should be limited to the portions of the historical property that could be adversely affected by the Project. Destructive data recovery methods shall not be applied to portions of the archaeological resources if nondestructive methods are feasible.

The ADRP includes the following elements:

- Field Methods and Procedures. Descriptions of proposed field strategies, procedures, and operations.

- Cataloguing and Laboratory Analysis. Description of selected cataloguing system and artifact analysis procedures.

- Discard and Deaccession Policy. Description of and rationale for field and post-field discard and deaccession policies.
• Interpretive Program. Consideration of an on-site/off-site public interpretive program during the course of the archaeological data recovery program.

• Security Measures. Recommended security measures to protect the archaeological resource from vandalism, looting, and non-intentionally damaging activities.

• Final Report. Description of proposed report format and distribution of results.

• Curation. Description of the procedures and recommendations for the curation of any recovered data having potential research value, identification of appropriate curation facilities, and a summary of the accession policies of the curation facilities.

Human Remains and Associated or Unassociated Funerary Objects. As noted above, it is unlikely that prehistoric remains would be discovered at the Project Site. The treatment of human remains and of associated or unassociated funerary objects discovered during any soils disturbing activity shall comply with applicable State and Federal laws. This shall include immediate notification of the Coroner of the City and in the event of the Coroner’s determination that the human remains are Native American remains, notification of the California State Native American Heritage Commission (NAHC) who shall appoint a Most Likely Descendant (MLD) (Pub. Res. Code Sec. 5097.98). The archaeological consultant, the District, and MLD shall make all reasonable efforts to develop an agreement for the treatment of human remains and associated or unassociated funerary objects with appropriate dignity (CEQA Guidelines. Sec. 15064.5(d)). The agreement should take into consideration the appropriate excavation, removal, recordation, analysis, custodianship, curation, and final disposition of the human remains and associated or unassociated funerary objects.

Final Archaeological Resources Report. The archaeological consultant shall submit a Draft Final Archaeological Resources Report (FARR) to the District that evaluates the historical significance of any discovered archaeological resource and describes the archaeological and historical research methods employed in the archaeological testing/monitoring/data recovery program(s) undertaken. Information that may put at risk any archaeological resource shall be provided in a separate removable insert within the final report.

Copies of the FARR shall be distributed as follows: the District shall receive three copies of the FARR, one of which would be transmitted to the California Archaeological Site Survey Northwest Information Center (NWIC) along with copies of any formal site recordation forms and/or documentation for nomination to the
National Register of Historic Places/California Register of Historical Resources; the Major Environmental Analysis division of the San Francisco Planning Department shall receive two copies of the FARR. In instances of high public interest in or the high interpretive value of the resource, the District may require a different final report content, format, and distribution than that presented above.
D. TRANSPORTATION

SETTING

The analysis in this section is based on the *CCSF Chinatown/North Beach Campus Transportation Study* prepared for the Project (Transportation Study).¹ The Transportation Study followed the Planning Department’s *Transportation Impact Analysis Guidelines for Environmental Review*, October 2002 (*SF Guidelines*). The Transportation Study area is bounded by Broadway Street, Battery Street, Sacramento Street and Stockton Street. Figure 18 shows the Project Site and the study area. The Project Site is a surface parking lot at the northeast corner of Kearny Street and Washington Street.

Local Streets

The Project Site is served by local streets and the regional freeway system. Figure 18 shows nearby streets serving the Project Site and vicinity.

Kearny Street runs north-south between The Embarcadero (near Pier 39) and Market Street. Kearny Street is not continuous at locations near Francisco Street, Lombard Street, Filbert Street, and Vallejo Street. Kearny Street is a one-way street south of Columbus Avenue/Kearny Street, with four northbound travel lanes, no parking on the east side of the street, and 14-foot-wide sidewalks. The *San Francisco General Plan* identifies Kearny Street south of Columbus Avenue as a major arterial and a Transit Preferential Street.

Washington Street is east-west between Arguello Boulevard and The Embarcadero. Within the vicinity of the Project, Washington Street is one-way with one to two westbound travel lanes, on-street parking on both sides of the street, and 10-foot-wide sidewalks. The *San Francisco General Plan* identifies Washington Street as a major arterial between Kearny Street and The Embarcadero, a Transit Preferential Street between Hyde and Mason Streets, and a Neighborhood

¹ *CCSF Chinatown/North Beach Campus Transportation Study*, CHS Consulting Group, prepared for City College of San Francisco, March 21, 2007.
FIGURE 18: PROJECT STUDY BOUNDARY

SOURCE: CHS Consulting Group.
III. Environmental Setting and Impacts
D. Transportation

Pedestrian Street between Fillmore and Mason Streets. The Powell and Hyde Street cable car runs along Washington Street between Powell and Hyde Streets.

Montgomery Street runs north-south between Francisco Street, near The Embarcadero, and Market Street. Montgomery Street is a two-way street north of Washington Street with parking on both sides. South of Washington Street, Montgomery Street is one-way with three southbound travel lanes and parking on the west side of the street. In this section of Montgomery Street, parking is prohibited during the peak period of 3:00 p.m. to 7:00 p.m., thus increasing the travel lanes from three to four. The San Francisco General Plan designates Montgomery Street as a major arterial, a Transit Preferential Street between Washington Street and Bush Street, and a Citywide Pedestrian Network Street between Washington Street and California Street.

Jackson Street is a one-way, eastbound street from Powell Street to The Embarcadero. Jackson Street has one travel lane with on-street parking on both sides. The San Francisco General Plan identifies the segment of Jackson Street between Hyde and Mason Streets as a Transit Preferential Street, and the segment between Polk and Taylor Streets as a Neighborhood Pedestrian Street.

Columbus Avenue is a Major Arterial connecting the Financial District, North Beach, and Chinatown with Fisherman’s Wharf and Russian Hill. It runs southeast to northwest from Washington Street at Montgomery Street to North Point Street. Columbus Avenue has two travel lanes in each direction and parking on both sides of the street. Where Columbus Avenue terminates at Washington Street, the southbound travel lanes are reduced to one lane and the other lane becomes a left-turn pocket. Columbus Avenue is a transit-important street in the Transit Preferential Streets system. It is part of the Metropolitan Transportation System (MTS), the Congestion Management Network (CMP), and the Citywide Pedestrian Network. It is designated as a Citywide Bicycle Route (Route 11) and also a Neighborhood Pedestrian Street.

Regional Access

Interstate 80 (I-80) provides regional freeway access to the Project vicinity to and from the East Bay. The nearest access point from the Project Site to I-80 eastbound is via the on-ramps on
Harrison Street near First Street, approximately fifteen blocks south of the Project Site. The primary access point to the Project Site is via the I-80 westbound off-ramps at Fremont Street.

Interstate 280 (I-280) is a six-lane freeway serving the Peninsula and the South Bay that splits and terminates at King Street/Fourth Street, south of the Project area. The primary access points to and from the site are via The Embarcadero to the King Street ramps near Fourth Street.

US 101 provides regional access to the north and south of San Francisco. I-80 joins US 101 to the south of the Project area and provides access to the South Bay and the Peninsula. US 101 also connects San Francisco to the North Bay via Van Ness Avenue, Lombard Street, and the Golden Gate Bridge. The nearest access points to and from US 101 southbound are on- and off-ramps via I-80 at Fourth Street.

Intersection Level of Service Conditions

Traffic counts were collected at the four study intersections on April 13, 2005. Existing traffic conditions were evaluated for the weekday PM peak-hour (5:00 p.m. to 6:00 p.m.). The analysis is performed for the PM peak-hour because the background traffic is the heaviest. Based on the District class schedules, more students would travel to and from the campus during morning hours than during the PM peak period. However, the analysis of student trips during the PM peak period added to peak conditions on the surrounding network is appropriate. In addition, AM peak period conditions are also discussed in this input analysis.

Traffic operating characteristics of intersections are described by the concept of level of service (LOS). LOS is a qualitative description of an intersection’s performance based on the average delay per vehicle. Intersection LOS ranges from A, which indicates free flow or excellent conditions with short delays, to F, which indicates congested or overloaded conditions with extremely long delays. LOS A, B, C, and D are considered excellent to satisfactory service levels, while LOS E and LOS F are unacceptable.

The intersections were evaluated using the *2000 Highway Capacity Manual* operations methodology. This method determines the capacity for each lane group approaching the intersection. LOS is based on the average stopped delay per vehicle (seconds per vehicle) for the
various movements within the intersection. Adjustments are made to the intersection analysis to reflect the impact of location-specific conditions, such as heavy pedestrian volumes, delays due to bus stops, and narrow lane widths.

Table 2 presents the LOS and delay data for the study intersections. Table 2 shows that all of the study intersections currently operate at LOS B or better.

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Delay a (sec./veh.)</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington St./Montgomery St./Columbus Ave.</td>
<td>11.5</td>
<td>B</td>
</tr>
<tr>
<td>Kearny St./Washington St.</td>
<td>9.2</td>
<td>A</td>
</tr>
<tr>
<td>Kearny St./Jackson St.</td>
<td>10.0</td>
<td>A</td>
</tr>
<tr>
<td>Jackson St./Columbus Ave.</td>
<td>15.5</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:
a. Delay values are not actually measured in the field, but are estimated based on calculations of existing traffic volumes.

Transit Services

The Project Site is served by various local and regional public transit operators. Twelve San Francisco Municipal Railway (MUNI) lines provide service within the Project vicinity. Regional transit services are provided by AC Transit (to the East Bay), Golden Gate Transit and ferries (to the North Bay), Bay Area Rapid Transit (BART) (to the East Bay and Peninsula), Samtrans (to the Peninsula), and CalTrain (to the South Bay and Peninsula). The regional systems can be accessed from MUNI bus lines in the San Francisco downtown area, or are in walking distance of the Project Site on Market Street, Mission Street, or the Ferry Building.

The Project Site is about eight blocks north of the major Market Street transit service corridor in San Francisco, where MUNI surface lines, MUNI Metro subway lines, and BART all provide service. The Project Site is approximately two blocks from Sansome Street, Battery Street, and Stockton Street which are transit preferential streets. The study area is thus served by many

III. Environmental Setting and Impacts
D. Transportation
MUNI routes, and is within walking distance from all MUNI Metro lines. Bus stops are generally spaced on every other block on either side of the Project block.

Table 3 shows MUNI bus routes within the vicinity (one to three blocks) and their PM peak-period frequencies between 4:00 p.m. and 6:00 p.m.

<table>
<thead>
<tr>
<th>Route</th>
<th>PM Peak Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – California</td>
<td>3 min.</td>
</tr>
<tr>
<td>9X – San Bruno Express</td>
<td>10 min.</td>
</tr>
<tr>
<td>9AX – San Bruno “A” Express</td>
<td>10 min.</td>
</tr>
<tr>
<td>9BX – San Bruno “B” Express</td>
<td>10 min.</td>
</tr>
<tr>
<td>10 – Townsend</td>
<td>8 min.</td>
</tr>
<tr>
<td>12 – Folsom – Pacific</td>
<td>10 min./20 min.</td>
</tr>
<tr>
<td>30 – Stockton</td>
<td>4-5 min./9 min.</td>
</tr>
<tr>
<td>30X – Stockton Express</td>
<td>10 min.</td>
</tr>
<tr>
<td>41 – Union</td>
<td>10 min. IB/8 min.</td>
</tr>
<tr>
<td>45 – Union – Stockton</td>
<td>9 min.</td>
</tr>
<tr>
<td>82X – Union – Stockton</td>
<td>2 trips</td>
</tr>
</tbody>
</table>

Source: MUNI Schedule 2007, with updates from MUNI T-Line.
Notes:
- 9AX, 9BX, 30X and 82X provide inbound service during AM peak and outbound service during PM peak.
- The route segment of the 12-line west of Van Ness has 20-minute frequencies.
- The route segment of the 30-line west of Van Ness has 9-minute frequencies.
- IB = inbound; OB = outbound.

Available space on each MUNI line is based on capacity utilization, which relates the number of passengers per transit vehicle to the design capacity of the vehicle. The design capacity is based on MUNI’s maximum load standard for each type of vehicle. The capacity includes seated passengers and an appreciable number of standing passengers per vehicle (the number of standing passengers is approximately between 30 and 80 percent of the seated passengers, depending upon...
the specific transit vehicle configuration). The maximum loads for each vehicle, including both seated and standing passengers are as follows:\(^2\)

- 30-foot bus: 45 passengers
- 40-foot bus: 63 passengers
- 60-foot bus: 94 passengers
- Muni Metro: 119 passengers

Many MUNI transit corridors, such as the Market Street subway lines and the Kearny Street/Stockton Street corridor (9X, 9AX, 9BX, 30, 30X, and 45 lines) are at or near capacity, and operate under noticeably crowded conditions with many standees during peak periods. MUNI has adopted the service standard of 85 percent capacity utilization for the maximum loads.

For regional transit providers, capacity utilization is generally based on the number of seated passengers per vehicle. All of the regional transit operators except BART have a load factor standard of 1.0, which means that all seats are full. BART has a performance standard of 135 percent, which means that all seats are full and the number of standees corresponds to 35 percent of the seating capacity.

Parking Conditions

Existing weekday midday (1:30 p.m. to 3:30 p.m.) and weekday evening (6:30 p.m. to 8:00 p.m.) off-street parking conditions in the study area were conducted on April 5, 2007. Qualitative surveys found on-street parking to be generally full during the midday peak period (1:30 p.m. to 3:30 p.m.) and during the weekday evening period (6:30 p.m. to 8:00 p.m.). The off-street parking supply and occupancy analysis is based on field surveys conducted and based on the number of striped or numbered spaces. At un-striped lots, estimates of capacity were determined either by consulting the parking attendant, or physically counting the number of spaces or cars. Occupancy was determined by counting the number of parked cars, including cars that were stacked or parked in un-marked spaces.

\(^2\) Maximum loads based on *SF Guidelines*
There are 20 public off-street parking facilities in the study area with a total of 2,604 spaces during mid-day (Table 4 and Figure 19, below). During the weekday midday peak period, off-street parking facilities in the study area operate at a 84 percent occupancy level, with approximately 420 spaces available, including the Project Site.

TABLE 4
EXISTING WEEKDAY OFF-STREET PARKING SUPPLY AND OCCUPANCY CONDITIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name/Location</th>
<th>Midday Inventory</th>
<th>Midday Occupancy (1:30-3:30 p.m.)</th>
<th>Midday Occupancy Rate</th>
<th>Evening Inventory</th>
<th>Evening Occupancy (6:30-8:00 p.m.)</th>
<th>Evening Occupancy Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Washington & Kearny NE</td>
<td>69a</td>
<td>69</td>
<td>100%</td>
<td>69</td>
<td>28</td>
<td>41%</td>
</tr>
<tr>
<td>2</td>
<td>(Project Site)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Washington Street Garage</td>
<td>60a</td>
<td>51</td>
<td>85%</td>
<td>60</td>
<td>20</td>
<td>33%</td>
</tr>
<tr>
<td>4</td>
<td>Tam’s Parking</td>
<td>35a</td>
<td>32</td>
<td>91%</td>
<td>35</td>
<td>20</td>
<td>57%</td>
</tr>
<tr>
<td>5</td>
<td>Columbus Triangle</td>
<td>78a</td>
<td>78</td>
<td>100%</td>
<td>78</td>
<td>15</td>
<td>19%</td>
</tr>
<tr>
<td>6</td>
<td>Savoy Garage</td>
<td>110b</td>
<td>50</td>
<td>46%</td>
<td>110b</td>
<td>15b</td>
<td>14%</td>
</tr>
<tr>
<td>7</td>
<td>Portsmouth Square</td>
<td>510a</td>
<td>495</td>
<td>97%</td>
<td>510</td>
<td>160</td>
<td>31%</td>
</tr>
<tr>
<td>8</td>
<td>Royal Pacific Inn</td>
<td>50a</td>
<td>35</td>
<td>70%</td>
<td>50</td>
<td>16</td>
<td>32%</td>
</tr>
<tr>
<td>9</td>
<td>Miriwa Garage</td>
<td>49a</td>
<td>44</td>
<td>90%</td>
<td>49</td>
<td>15</td>
<td>31%</td>
</tr>
<tr>
<td>10</td>
<td>Westlake Building</td>
<td>65</td>
<td>40</td>
<td>62%</td>
<td>Closed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>Latex Lot</td>
<td>150</td>
<td>95</td>
<td>63%</td>
<td>150</td>
<td>50</td>
<td>33%</td>
</tr>
<tr>
<td>12</td>
<td>Sansome Garage</td>
<td>200a</td>
<td>187</td>
<td>94%</td>
<td>200</td>
<td>60</td>
<td>30%</td>
</tr>
<tr>
<td>13</td>
<td>INS Lot</td>
<td>16</td>
<td>10</td>
<td>63%</td>
<td>16</td>
<td>1</td>
<td>6%</td>
</tr>
<tr>
<td>14</td>
<td>California Parking</td>
<td>110a</td>
<td>110</td>
<td>100%</td>
<td>60a</td>
<td>25</td>
<td>42%</td>
</tr>
<tr>
<td>15</td>
<td>Allright</td>
<td>72a</td>
<td>70</td>
<td>97%</td>
<td>72</td>
<td>25</td>
<td>35%</td>
</tr>
<tr>
<td>16</td>
<td>Four Seventy Five</td>
<td>250b</td>
<td>200b</td>
<td>80%</td>
<td>250b</td>
<td>100b</td>
<td>40%</td>
</tr>
<tr>
<td>17</td>
<td>Hilton Hotel Financial District</td>
<td>430a</td>
<td>350</td>
<td>81%</td>
<td>430</td>
<td>150</td>
<td>35%</td>
</tr>
<tr>
<td>18</td>
<td>505 Montgomery</td>
<td>50a</td>
<td>50</td>
<td>100%</td>
<td>Closed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td>655 Montgomery</td>
<td>100</td>
<td>70</td>
<td>70%</td>
<td>100</td>
<td>30</td>
<td>30%</td>
</tr>
<tr>
<td>20</td>
<td>601 Montgomery</td>
<td>50a</td>
<td>48</td>
<td>96%</td>
<td>Closed</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td>St. Mary’s Center</td>
<td>150b</td>
<td>100b</td>
<td>67%</td>
<td>150b</td>
<td>30b</td>
<td>20%</td>
</tr>
</tbody>
</table>

Total 2,604 2,184 84% 2,389 760 32%

Source: CHS Consulting Group, 2007.

Notes:
- a. Supply includes maximum capacity of valet parking
- b. Garage capacity and occupancy were obtained from the attendant because of access restrictions.
- c. There are two levels of this garage, one of which is closed in the evening.
FIGURE 19: EXISTING OFF-STREET PARKING LOCATIONS

CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

SOURCE: CHS Consulting Group.
During the weekday evening period, two out of 20 public parking facilities are closed. The total number of parking spaces available in the evening is 2,389 spaces, compared to 2,604 during the day. Observations showed that lots and garages in the Project area have more available spaces in the evenings than in the daytime. Off-street facilities in the study area operate at a 32 percent occupancy rate during weekday evenings, with approximately 1,629 spaces available.

Pedestrian Conditions

Most of the streets in the Project area have 10- to 12-foot wide sidewalks; Kearny and Montgomery Street have 14-foot wide sidewalks. All of these sidewalks can accommodate relatively heavy pedestrian volumes. No pedestrian counts were conducted for this Project, but field observations showed that there is a moderate amount of foot traffic in the vicinity of the Project Site and that sidewalks have sufficient capacity to handle additional pedestrian traffic.

Bicycle Conditions

There are three designated bicycle routes within the study area. No bicycle counts were conducted for this Project; field observations indicated that bicycle volumes in the area are relatively low to moderate compared to pedestrian and vehicular traffic. On sections of Stockton Street, Sansome Street, Battery Street, and Columbus Avenue, cyclists share the right-of-way with buses and other vehicles. In stretches where lanes are narrow, cyclists may have to slow down to avoid buses. Other conflicts exist between vehicles and bicycles in the study area, especially when double parking blocks existing bicycle lanes.

In the Project vicinity, the following roadways are designated as Citywide Bicycle Routes in the *San Francisco General Plan*:

- Battery Street
- Broadway Street
- Columbus Avenue
- Pacific Street
The Official San Francisco Bike Route System describes the following bicycle routes.

Route 10 connects the Richmond District with Downtown. It is a Class II bike lane along Clay Street from Cherry Street to Webster Street, then along Webster Street to Broadway Street. It becomes a Class III bike route along Broadway Street to Polk Street, then along Polk Street to Pacific Avenue where it follows Pacific Avenue to The Embarcadero.

Route 11 is a Class III route that runs south from Northpoint Street (Fishermans Wharf), where it connects with Route 2, along Columbus Avenue to Clay Street (Washington Street northbound), then Battery Street (Sansome Street northbound) to Market Street where it connects to Route 50. It continues south along Second Street to King Street where it connects to Route 5.

Route 17 is a Class III bike route that connects Route 10 to Route 16 (Stockton/Sutter) along Stockton from Broadway (Chinatown) to Post Streets (Union Square).

IMPACTS

Significance Criteria

The following are the significance criteria for the determination of impacts associated with a project (these significance criteria are consistent with the criteria applied in CEQA documents for the City of San Francisco):

- The operational impacts on signalized intersections are considered significant if project-related traffic causes the level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F. The operational impacts on unsignalized intersections are considered potentially significant if project-related traffic causes the level of service at the worst approach to deteriorate from LOS D or better to LOS E or F and Caltrans signal warrants would be met, or causes Caltrans signal warrants to be met when the worst approach is already at LOS E or F. The project may result in significant adverse impacts at intersections that operate at LOS E or F under existing conditions depending upon the magnitude of the project’s contribution to the worsening of delay. In addition, the project would have a significant adverse effect if it would cause major traffic hazards, or would contribute considerably to the cumulative traffic increases that would cause the deterioration in levels of service to unacceptable levels.
San Francisco does not consider parking supply as part of the permanent physical environment. Parking conditions are not static, as parking supply and demand varies from day-to-day, from day to night, from month-to-month, etc. Hence, the availability of parking spaces (or lack thereof) is not a permanent physical condition, but changes over time as people change their modes and patterns of travel.

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project’s social impacts need not be treated as significant impacts on the environment. Environmental documents should, however, address the secondary physical impacts that could be triggered by a social impact (CEQA Guidelines § 15131 (a)). The social inconvenience of parking deficits, such as having to hunt for scarce parking spaces, is not an environmental impact. In the experience of San Francisco transportation planners, however, the absence of a ready supply of parking spaces, combined with available alternatives to auto travel (e.g., transit service, taxis, bicycles or travel by foot) and a relatively dense pattern of urban development, induces many drivers to seek and find alternative parking facilities, shift to other modes of travel, or change their overall travel habits. Any such resulting shifts to transit service particular would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy established in the City’s Administrative Code Chapter 16.102 provides the “parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation.”

The transportation analysis accounts for potential secondary effects, such as cars circling and looking for a parking space in areas of limited parking supply, by assuming that all drivers would attempt to find parking at or near the Project Site and then seek parking farther away if convenient parking is available. Moreover, the secondary effects of drivers searching for parking is typically offset by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area. Hence, any secondary environmental impacts which may result from a shortfall in parking in the vicinity of the Project would be minor, and the traffic assignments used in the transportation analysis, as well as in the associated air quality, noise and pedestrian safety analyses, reasonably addresses potential secondary effects.

The project would have a significant effect on the environment if it would cause a substantial increase in transit demand that could not be accommodated by adjacent transit capacity, resulting in unacceptable levels of transit service; or cause a substantial increase in operating delay or costs such that significant adverse impacts in transit service levels could result. With the MUNI and regional transit screenlines analyses, the project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the weekday PM peak-hour.

The project would have a significant effect on the environment if it would result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas.
III. Environmental Setting and Impacts
D. Transportation

- The project would have a significant effect on the environment if it would create potentially hazardous conditions for bicyclists or otherwise substantially interfere with bicycle accessibility to the site and adjoining areas.

- The project would have a significant effect on the environment if it would result in a loading demand during the peak-hour of loading activities that could not be accommodated within the proposed on-site loading supply or within on-street loading zones, and if it would create potentially hazardous traffic conditions.

- Construction-related impacts generally would not be considered significant due to their temporary and limited duration.

Trip Generation

The trip generation analysis for the Project was calculated based on the projected number of employees and faculty, and the maximum number of students that could be accommodated at any given time based on the total capacity of proposed classroom/laboratory space. This projected maximum of about 1,700 students would be much higher than for afternoon and evening campus population based on the existing and future patterns, where, as noted above, afternoon and evening classes each represent about 21 percent of total daily classes, or about 520 students. Thus, the analysis presented in this report would represent the worst-case condition for the Project.

Table 5 presents the estimated number of employees, faculty, and students during the AM, noon, PM, and evening periods. The evening peak hour data assumes that 1,700 students attending the PM classes would exit the campus and 1,700 students attending evening classes would enter the campus during the 4:30-5:30 peak hour. As noted above, this would represent the worst-case condition.

Table 6 presents the estimated person-trip generation for the Project. Person-trips were based on the estimated number of employees, faculty and students. Each person is anticipated to generate two work-related person-trips. Employee and faculty non-work related person-trips were estimated based on the work and non-work trip splits in the *SF Guidelines*. It is assumed that all student person-trips are work-related.
TABLE 5
PROJECT TRIP GENERATION

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Employee</th>
<th>Faculty</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM (8:00 a.m.-12 noon)</td>
<td>23</td>
<td>64<sup>b</sup></td>
<td>1,700</td>
</tr>
<tr>
<td>Noon (12 p.m.-1:00 p.m.)</td>
<td>23</td>
<td>64<sup>b</sup></td>
<td>1,700</td>
</tr>
<tr>
<td>PM (1:00 p.m.-5:00 p.m.)</td>
<td>28<sup>a</sup></td>
<td>64<sup>b</sup></td>
<td>1,700</td>
</tr>
<tr>
<td>Evening</td>
<td>8</td>
<td>25<sup>c</sup></td>
<td>1,700</td>
</tr>
<tr>
<td>PM Peak Hour (4:30 p.m.-5:30 p.m.)<sup>d</sup></td>
<td>23</td>
<td>67</td>
<td>3,400</td>
</tr>
</tbody>
</table>

Source: CHS Consulting Group, 2007.

Notes:
- **a.** There would be total 28 employees, of which 7 would be security, janitorial, and support staff. Their shift would typically start in the mid-afternoon and last till 10 PM.
- **b.** There would be total 99 faculty members and 42 classrooms and laboratories. At any given time, there would be a maximum of 42 faculty members teaching classes and an additional 14 faculty on campus preparing for the classes and consulting with the students.
- **c.** Evening faculty is estimated to be 58 percent of the maximum daytime faculty.
- **d.** PM peak hour trip generation assumes all 23 daytime employees, 42 faculty members, and 1,700 afternoon class students would leave the campus, and the 1,700 evening class students would arrive the campus.

TABLE 6
PROJECT PERSON-TRIPS

<table>
<thead>
<tr>
<th>Projected Project Population</th>
<th>Daily Person Trips<sup>a</sup></th>
<th>PM Peak Hour Person-Trips<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Work Trips</td>
<td>Non-Work Trips</td>
</tr>
<tr>
<td>Employees</td>
<td>112</td>
<td>448</td>
</tr>
<tr>
<td>Faculty</td>
<td>396</td>
<td>1,584</td>
</tr>
<tr>
<td>Students</td>
<td>0</td>
<td>13,600</td>
</tr>
<tr>
<td>Total</td>
<td>1,827</td>
<td>15,632</td>
</tr>
</tbody>
</table>

Source: CHS Consulting Group, 2007.

Notes:
- **a.** The Daily Trip Rate is based on one inbound and one outbound trip.
- **b.** PM peak-hour person-trips based on proposed employee, faculty, and student schedules plus non-work trips per *SF Guidelines*.

III. Environmental Setting and Impacts
D. Transportation
It is assumed that each faculty member/employee and student would generate two work-related daily person-trips (one inbound to the campus and one outbound from the campus). It is further assumed that each faculty member/employee would also generate non-work related trips, such as visitors coming to the campus for meetings or employee/faculty going to other places for meetings. Daily non-work related trips were estimated based on the work/non-work split provided in the *SF Guidelines*. The *SF Guidelines* factors are 20 percent work related and 80 percent non-work related for the total daily person-trips for a government office employee. This would be conservative for the City College uses, because the campus would not be a typical government office that would attract a large number of visits from the general public. However, the *SF Guidelines* do not have a trip-generation rate for educational uses, and the government office trip rate was used in the Transportation Study. This would likely be a conservatively high estimate of total employee-related trips for the Project.

Table 6 shows that the Project would generate approximately 16,140 total daily person-trips, of which 508 would be work related trips and 15,632 would be non-work related trips. Based on the number of employees, faculty, and students during the peak-hour, PM peak-hour person-trips would be approximately 3,569. The PM peak hour person trips are all outbound trips, including five non-work trips.

The Project person-trips were assigned to different transportation modes to determine the number of auto-person, transit, and other trips to and from the site. Mode split information was obtained from surveys of students, faculty, and employees for the Chinatown/North Beach Campus conducted in January 2007.3
Tables 7 through 9 present a summary of faculty/employee and student travel modes and trip origins and destinations, which were used as the basis for the Project modal split and traffic assignment. About 75 percent of faculty/employees would come from San Francisco, and 98 percent of students would come from San Francisco. As shown in Table 7, over 93 percent of the trip origins are home for both faculty/employees and students.

TABLE 7
TRIP ORIGIN BY LOCATIONS

<table>
<thead>
<tr>
<th>Residence</th>
<th>North of Market</th>
<th>Richmond</th>
<th>South-of-Market/Mission</th>
<th>Twin Peaks</th>
<th>Sunset</th>
<th>San Francisco Total</th>
<th>East Bay</th>
<th>Peninsula/South Bay</th>
<th>North Bay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty/Employees</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>54</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>72</td>
</tr>
<tr>
<td>Percent distribution</td>
<td>24.1%</td>
<td>25.9%</td>
<td>11.1%</td>
<td>9.3%</td>
<td>29.6%</td>
<td>75%</td>
<td>16.7%</td>
<td>5.5%</td>
<td>2.8%</td>
<td>100%</td>
</tr>
<tr>
<td>Student</td>
<td>1290</td>
<td>144</td>
<td>933</td>
<td>17</td>
<td>314</td>
<td>2,698</td>
<td>9</td>
<td>54</td>
<td>0</td>
<td>2,761</td>
</tr>
<tr>
<td>Percent distribution</td>
<td>47.8%</td>
<td>5.3%</td>
<td>34.6%</td>
<td>0.6%</td>
<td>11.7%</td>
<td>97.7%</td>
<td>0.3%</td>
<td>2%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Trip destination locations in Table 8 have generally similar pattern, except there is a higher percentage of trips destined to a location other than a person’s home. This represents the pattern that many City College students attend classes part-time, so that trip destinations from the campus would be to job locations, rather than home.

TABLE 8
TRIP DESTINATION BY LOCATIONS

<table>
<thead>
<tr>
<th>Residence</th>
<th>North of Market</th>
<th>Richmond</th>
<th>South-of-Market/Mission</th>
<th>Twin Peaks</th>
<th>Sunset</th>
<th>San Francisco Total</th>
<th>East Bay</th>
<th>Peninsula/South Bay</th>
<th>North Bay</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty/Employee</td>
<td>11</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>54</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>72</td>
</tr>
<tr>
<td>Percent distribution</td>
<td>20.4%</td>
<td>27.8%</td>
<td>11.1%</td>
<td>11.1%</td>
<td>29.6%</td>
<td>75%</td>
<td>15.3%</td>
<td>5.5%</td>
<td>4.2%</td>
<td>100%</td>
</tr>
<tr>
<td>Student</td>
<td>1385</td>
<td>140</td>
<td>868</td>
<td>16</td>
<td>288</td>
<td>2,696</td>
<td>7</td>
<td>58</td>
<td>0</td>
<td>2,761</td>
</tr>
<tr>
<td>Percent distribution</td>
<td>51.3%</td>
<td>5.2%</td>
<td>32.2%</td>
<td>0.6%</td>
<td>10.7%</td>
<td>97.7%</td>
<td>0.3%</td>
<td>2%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 9 shows employee/faculty and student travel modes, based on the January 2007 survey. About 61 percent of students would use transit to the campus, and about 31 percent would walk; this would be a total of about 92 percent. About five percent would use private autos, and two percent would carpool. About 50 percent of faculty and employee trips would use transit or walk. About 48 percent would use private autos or carpool. Modal split data are slightly different for each class schedule. For example, there is slightly lower auto use and higher transit use by students during weekday daytime classes than weekend classes.

<table>
<thead>
<tr>
<th>Travel Mode</th>
<th>Student</th>
<th>Employee/Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>133</td>
<td>32</td>
</tr>
<tr>
<td>Transit</td>
<td>1679</td>
<td>26</td>
</tr>
<tr>
<td>Carpool</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>Bicycle</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>Walk</td>
<td>872</td>
<td>10</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Total</td>
<td>2761</td>
<td>72</td>
</tr>
</tbody>
</table>

Based on the mode split factors derived from the January 2007 survey, Table 10 shows that during the PM peak-hour, the Project would generate approximately 246 auto trips (188 drive alone and 58 carpool), 1,993 transit trips, 1,305 walk trips, and 25 other trips (bicycles, motorcycles).

<table>
<thead>
<tr>
<th>Campus Population</th>
<th>Auto (Drive Alone)</th>
<th>Carpool</th>
<th>Transit</th>
<th>Walk</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>17</td>
<td>4</td>
<td>32</td>
<td>14</td>
<td>1</td>
<td>68</td>
</tr>
<tr>
<td>Faculty</td>
<td>26</td>
<td>5</td>
<td>46</td>
<td>23</td>
<td>1</td>
<td>101</td>
</tr>
<tr>
<td>Student</td>
<td>145</td>
<td>49</td>
<td>1,915</td>
<td>1,268</td>
<td>23</td>
<td>3,400</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>58</td>
<td>1,993</td>
<td>1,305</td>
<td>25</td>
<td>3,569</td>
</tr>
</tbody>
</table>

Table 11 presents the estimated PM peak-hour vehicle-trips for the Project. Vehicle-trips were estimated by dividing the number of auto person-trips by the vehicle occupancy rates (VOR). Based on the campus survey data, the VOR was determined to be 2.0 for carpools. As shown in the table, the Project would generate approximately 216 weekday PM peak-hour vehicle-trips, of which 97 would be inbound to the site and 119 outbound from the Project Site. It is assumed that all work trips during the PM peak-hour would be outbound trips and the non-work trips would be divided 50-50 percent between inbound and outbound trips. The AM peak-hour vehicle trips would be approximately 80 vehicles, of which 78 would be inbound trips and 2 would be outbound trips, based on the rate factor of numbers of students with morning classes versus afternoon classes. Truck trips generated by the Project for pick ups and deliveries are not included in Table 11, since the majority of truck trips would occur before 4 p.m.

<table>
<thead>
<tr>
<th>Campus Population</th>
<th>PM Peak Hour Vehicle-Trips</th>
<th>Inbound Trips</th>
<th>Outbound Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee</td>
<td>19</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Faculty</td>
<td>28</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Student</td>
<td>169</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>Total</td>
<td>216</td>
<td>97</td>
<td>119</td>
</tr>
</tbody>
</table>

Table 11: Vehicle-Trip Generation

Source: CHS Consulting Group, 2007.

Existing Plus Project Conditions

Table 12 presents the results of the intersection LOS analysis for the Existing (2005) and Existing Plus Project condition, with the worst-case, full-occupancy assumptions. Under the Existing Plus Project conditions, all of the study intersections currently operate at LOS A or B and are expected to continue operating at LOS A and B, with the exception of Jackson Street/Columbus Avenue, which would operate at LOS C, an acceptable condition. There would be no significant changes to delays. Therefore, the Project would not cause significant impacts to the study intersections.
TABLE 12
PM PEAK-HOUR INTERSECTION LEVEL OF SERVICE: EXISTING AND EXISTING PLUS PROJECT

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing (2005)</th>
<th>Existing Plus Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington St./Montgomery St./Columbus Ave.</td>
<td>11.5 B</td>
<td>11.5 B</td>
</tr>
<tr>
<td>Kearny St./Washington St.</td>
<td>9.2 A</td>
<td>9.7 A</td>
</tr>
<tr>
<td>Kearny St./Jackson St.</td>
<td>10.0 A</td>
<td>10.4 B</td>
</tr>
<tr>
<td>Jackson St./Columbus Ave.</td>
<td>15.5 B</td>
<td>23.9 C</td>
</tr>
</tbody>
</table>

Source: CHS Consulting Group, 2007.

Since the Project is a consolidation of the spaces leased by the District in the Chinatown/North Beach area, some of the vehicles heading to and from the existing campus locations pass through these four study intersections and are thus part of existing conditions. Therefore, treating all vehicle trips generated by the Project as net new additions to the study intersections would be a conservative analysis.

No AM peak-hour LOS analysis was performed; however, a sensitivity analysis was conducted, which added the AM peak-hour Project vehicle trips to the PM peak-hour volumes at the four study intersections. As noted above, PM peak-hour intersection conditions typically have higher volumes than AM conditions. Adding the AM Project trips to the PM peak-hour intersection conditions for AM conditions would be a conservative scenario. This sensitivity analysis did not change conditions for Existing plus Project LOS. Therefore, the Project would not have significant adverse effects on AM intersection LOS.

Parking Demand

The parking demand analysis was based on the number of employees, faculty, and students that would drive to the campus. Table 13 presents the estimated parking demand during the four time periods on a typical weekday: morning, noon, afternoon, and evening. The demand analysis presented in Table 13 is reasonably conservative because it assumes all employees, faculty, and
III. Environmental Setting and Impacts
 D. Transportation

students who drive to the Project Site would park for the entire duration these individuals stay on
the campus, based on the travel mode patterns in the Table 9, and class schedule patterns.

Table 13 shows that the Project would generate parking demand for 229 spaces in the morning,
189 spaces during the noon period, 208 spaces in the afternoon, and 95 spaces in the evening.

<table>
<thead>
<tr>
<th>TABLE 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATED PROJECT PARKING DEMAND</td>
</tr>
<tr>
<td>Employees</td>
</tr>
<tr>
<td>8:00 a.m. to Noon</td>
</tr>
<tr>
<td>Noon to 1:00 p.m.</td>
</tr>
<tr>
<td>1:00 p.m. to 5:00 p.m.</td>
</tr>
<tr>
<td>Evening</td>
</tr>
</tbody>
</table>

There would be no parking provided on the Project Site. The District would lease 50 spaces from
the St. Mary’s Center garage on the Project block. Based on the vehicle modes presented in
Table 9, the 50 spaces would accommodate parking demand generated by employees and faculty,
but not the total demand generated by employees, faculty, and students. With the worst-case, full-
occupancy assumptions, There would be a parking deficit of approximately 179 spaces in the
morning, 139 spaces during the noon-time, 158 spaces in the afternoon, and 95 spaces in the
evening. This deficit could be met by available spaces in the study area: there are approximately
351 spaces available in the parking facilities within two-block radius of the Project Site, taking
into account the 69 spaces which would be removed by the Project. The Project Site frontage
currently has three metered parking spaces on Washington Street, and one metered space on
Kearny Street. There are no other parking spaces along the frontage because of existing
driveways and fire hydrant red zones. With the Project, it is likely that two spaces on Washington
Street would be removed to accommodate the proposed loading zone, but new spaces would be
created on Kearny Street. Other metered spaces would be replaced after project completion.

Based on the January 2007 survey results, approximately 36 percent of the faculty/employee and
88 percent of the students who would drive reported that they would park on the street. On-street
parking spaces are generally occupied in both Chinatown and Jackson Square area. According to survey responses, on-street parking spaces in these two areas would be difficult to find.

While parking deficits are an inconvenience to drivers, they are not significant physical impacts on the environment. In support of the “Transit First” policy in the San Francisco General Plan, which emphasizes a shift from use of personal automobiles to public transit, priority is given to transit improvements before developing transportation improvements which encourage the continued use of the automobile. Planning Code Section 161(d) implemented this policy for the Project Site and surrounding areas, and exempts most uses in the Chinatown Community Business District (CCB District) from providing off-street parking, except for uses on sites larger than 20,000 square feet. Faced with severe parking shortages, drivers generally seek and find alternative parking facilities or shift modes of travel (e.g., public transit, taxis, or bicycles). Parking shortfalls relative to demand are therefore not considered significant environmental impacts in the urban context of San Francisco.

Pedestrian Impacts

During the weekday PM peak-hour, with the worst-case, full-occupancy assumptions, the Project would generate a total of 3,298 new pedestrian trips (1,993 transit and 1,305 walk). All pedestrian entrances for the Project would be located on Kearny Street. Kearny Street has 14-foot sidewalks and can accommodate the additional foot traffic. Transit passengers would be spread over several MUNI lines in the Project vicinity, such as MUNI 9X, 9AX, and 9BX lines on Kearny, the 30 and 45 lines on Stockton Street, the 41 line on Columbus and Montgomery, and the 1 line on Sacramento and Clay. Other transit users may walk to and from MUNI lines or regional service on Market Street. Student, employees, or faculty arriving and leaving the campus via these transit lines would cross intersections in the study area, and affect pedestrian conditions. The peak pedestrian conditions would be around noon, when almost half of the morning period students would leave the campus. Total pedestrian trips would increase near the Project Site by approximately 3,298. There would be increased volume along the Kearny Street sidewalk in front of the Project and potentially at the Kearny Street/Washington Street crosswalks. Pedestrian LOS is measured by pedestrians per effective width of the sidewalk per minute.
of flow (PFM). Average flow rate between 15 and 20 PFM is LOS D. 3,298 pedestrians per hour along a 14-foot sidewalk (within effective sidewalk width would be nine feet) would be 6.1 PFM which is LOS B. This increased pedestrian volume would not have significant adverse impacts because the sidewalk LOS will remain substantially better then D.

The additional pedestrians generated by the Project would not cause substantial overcrowding on sidewalks, nor significant circulation impacts along sidewalks and crosswalks in the area. The Project would not create potential hazardous conditions for pedestrians or otherwise interfere with pedestrian access to the site.

Bicycle Impacts

Field observations showed that bicycle volumes on most study area streets are relatively low; no bicycle counts were conducted. Based on the travel surveys, less than one percent of students, faculty, and employees would use bicycles to travel to and from the campus. Considering the District’s goal of encouraging bicycle ridership, even a two- or three-fold increase would not substantially increase bicycle traffic. The Project would generate nominal amount of bicycle traffic, thus, it would not cause significant bicycle impacts.

The District encourages alternative transportation. The Project would be designed to include storage space for bicycles, as indicated in the Improvement Measure D-2 at the end of the Transportation Section.

Transit Impacts

As noted in Table 14, the Chinatown/North Beach Campus presently generates approximately 851 MUNI riders (all inbound to the campus) during the AM peak-hour and 505 MUNI riders (both inbound and outbound) during the PM peak-hour. These transit trips result from the current pattern of more morning period classes than afternoon and evening period classes. As noted above, the trip generation for the Project was calculated based on the projected number of employees and faculty, and the maximum number of students that could be accommodated based on the total capacity of proposed classroom/laboratory space. The projected maximum would be much higher for afternoon and evening campus population than existing patterns, where afternoon
and evening classes each represent about 21 percent of total daily classes. Thus, this transit
analysis would represent the worst-case condition.

Based on this full occupancy condition, MUNI ridership would increase to approximately 1,173
during the AM peak hour (all inbound trips) and 1,993 during the PM peak-hour transit trips
(including both outbound for the afternoon classes and inbound for the evening classes). Of the
total 1,173 MUNI riders during the AM peak hour and 1,993 MUNI riders during the PM peak
hour, the net new MUNI riders would be approximately 322 during the AM peak hour and 1,489
during the PM peak hour.

In comparison, the transit demand based on current patterns of morning, afternoon, and
evening classes, with a 21 percent increase in total student population, would result in about total
608 PM peak-hour transit trips in both inbound and outbound directions. The net transit
passengers would be increased by approximately 176 during the AM peak hour and 103 during the
PM peak hour.

Table 14 shows the change in transit trips based on the conservative, full-occupancy trip
generation assumptions.

<table>
<thead>
<tr>
<th></th>
<th>Existing MUNI Ridership</th>
<th>Project MUNI ridership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM peak Hour</td>
<td>PM Peak Hour</td>
</tr>
<tr>
<td>Employee</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Faculty</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Student</td>
<td>8930</td>
<td>481</td>
</tr>
<tr>
<td>Total</td>
<td>851</td>
<td>505</td>
</tr>
<tr>
<td>Difference from Existing</td>
<td>322</td>
<td>1,489</td>
</tr>
</tbody>
</table>
A screenline analysis was performed for both Existing Plus Project and Future Cumulative conditions to assess the change in transit conditions. Both the Existing and Future Cumulative condition data were obtained from the SF Guidelines. Approximately 50 percent of the MUNI riders would use the system within the screenlines because their residence location or destinations are within the screenlines. Thus these riders would not cross the screenlines.

Table 15 shows the estimated increase in MUNI ridership at the four downtown screenlines and Project’s contribution to MUNI screenlines during the PM peak hour. These screenlines were established by the San Francisco Planning Department to assess MUNI impacts at peak load points. There are four screenlines (Three of the four screenlines are at or already exceed capacity utilization standards established by MUNI). Additional MUNI riders generated by the Project would cause significant increase in capacity utilization for the southeast screenline (seven percent). Five percent is usually used as the threshold to determine whether the impact would be significant. Increase in capacity utilization means increase in crowding in MUNI buses and light rail vehicles. It should be noted that capacity utilization presented below is an average for the entire PM peak hour, field observation shows that some MUNI vehicles may have higher or lower capacity utilization than the average during the PM peak hour.

Table 16 presents the screenline analysis for the future cumulative conditions. Under the full occupancy assumption, the Project contribution to the future growth in MUNI volumes would exceed the five percent threshold generally used by the Planning Department to determine adverse impacts. Thus, under the full occupancy condition, the Project would have significant impacts on MUNI.

Although the full-occupancy conditions is considered a worst-case assumption compared to current class schedule patterns, the Project’s increase in demand on transit is conservatively judged to have a significant impact on transit capacity. Since there are no measures that could be implemented directly by the District to reduce this transit impact, this impact would be significant and unavoidable.

4 MUNI has established 85 percent as its threshold for determining its impacts.
TABLE 15
MUNI SCREENLINE ANALYSIS - EXISTING PLUS PROJECT, PM PEAK HOUR CONDITIONS

<table>
<thead>
<tr>
<th>Screenline</th>
<th>Existing Ridership</th>
<th>Project Trips</th>
<th>Project Rider</th>
<th>Existing Capacity</th>
<th>Percent Capacity Utilization</th>
<th>Percent Capacity with Project</th>
<th>Percent Project Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearny/Stockton Corridor</td>
<td>2,217</td>
<td>0</td>
<td>2,222</td>
<td>2,222</td>
<td>85%</td>
<td>85%</td>
<td>0%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>946</td>
<td>0</td>
<td>948</td>
<td>948</td>
<td>55%</td>
<td>55%</td>
<td>0%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,163</td>
<td>0</td>
<td>3,170</td>
<td>3,170</td>
<td>73%</td>
<td>73%</td>
<td>0%</td>
</tr>
<tr>
<td>Northwest Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geary Corridor</td>
<td>2,509</td>
<td>26</td>
<td>2,535</td>
<td>2,942</td>
<td>85%</td>
<td>86%</td>
<td>1%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>5,956</td>
<td>61</td>
<td>6,017</td>
<td>6,989</td>
<td>85%</td>
<td>86%</td>
<td>1%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8,465</td>
<td>87</td>
<td>8,552</td>
<td>9,931</td>
<td>85%</td>
<td>86%</td>
<td>1%</td>
</tr>
<tr>
<td>Southeast Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Street Corridor</td>
<td>424</td>
<td>43</td>
<td>467</td>
<td>595</td>
<td>71%</td>
<td>79%</td>
<td>7%</td>
</tr>
<tr>
<td>Mission Corridor</td>
<td>1,168</td>
<td>118</td>
<td>1,286</td>
<td>1,325</td>
<td>88%</td>
<td>97%</td>
<td>9%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>1,982</td>
<td>201</td>
<td>2,183</td>
<td>2,170</td>
<td>91%</td>
<td>101%</td>
<td>9%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,574</td>
<td>362</td>
<td>3,936</td>
<td>4,090</td>
<td>87%</td>
<td>96%</td>
<td>9%</td>
</tr>
<tr>
<td>Southwest Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subway Lines</td>
<td>5,259</td>
<td>146</td>
<td>5,405</td>
<td>5,891</td>
<td>89%</td>
<td>92%</td>
<td>3%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>1,409</td>
<td>39</td>
<td>1,448</td>
<td>1,830</td>
<td>77%</td>
<td>79%</td>
<td>2%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>6,668</td>
<td>185</td>
<td>6,856</td>
<td>7,721</td>
<td>86%</td>
<td>89%</td>
<td>2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21,870</td>
<td>637</td>
<td>22,507</td>
<td>26,059</td>
<td>84%</td>
<td>86%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Note: Totals may not add due to rounding.
a. Project generated MUNI riders would most likely reside or work south of the Northeast Screenline.
TABLE 16

MUNI SCREENLINE ANALYSES - FUTURE CUMULATIVE PM PEAK HOUR CONDITIONS

<table>
<thead>
<tr>
<th>Screenline</th>
<th>Existing Hourly Ridership</th>
<th>Existing Hourly Capacity</th>
<th>Future Demand</th>
<th>Future Capacity</th>
<th>Future Capacity Utilization</th>
<th>Growth</th>
<th>Project Trips</th>
<th>Project % of Future Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearny/Stockton</td>
<td>2,217</td>
<td>2,611</td>
<td>2,770</td>
<td>3,468</td>
<td>80%</td>
<td>553</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>946</td>
<td>1,706</td>
<td>911</td>
<td>1,596</td>
<td>57%</td>
<td>(35)</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,163</td>
<td>4,317</td>
<td>3,681</td>
<td>5,064</td>
<td>73%</td>
<td>518</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Northwest Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geary Corridor</td>
<td>2,509</td>
<td>2,942</td>
<td>2,915</td>
<td>3,099</td>
<td>94%</td>
<td>406</td>
<td>26</td>
<td>0.9%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>5,956</td>
<td>6,989</td>
<td>6,939</td>
<td>8,293</td>
<td>84%</td>
<td>983</td>
<td>61</td>
<td>0.9%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>8,465</td>
<td>9,931</td>
<td>9,854</td>
<td>11,392</td>
<td>86%</td>
<td>1,389</td>
<td>87</td>
<td>0.9%</td>
</tr>
<tr>
<td>Southeast Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Street Corridor</td>
<td>424</td>
<td>595</td>
<td>758</td>
<td>893</td>
<td>85%</td>
<td>334</td>
<td>54</td>
<td>7.1%</td>
</tr>
<tr>
<td>Mission Corridor</td>
<td>1,168</td>
<td>1,325</td>
<td>1,497</td>
<td>1,685</td>
<td>89%</td>
<td>329</td>
<td>107</td>
<td>7.1%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>1,982</td>
<td>2,170</td>
<td>2,818</td>
<td>2,600</td>
<td>108%</td>
<td>836</td>
<td>201</td>
<td>7.1%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,575</td>
<td>4,090</td>
<td>5,073</td>
<td>5,178</td>
<td>98%</td>
<td>1,498</td>
<td>362</td>
<td>7.3%</td>
</tr>
<tr>
<td>Southwest Screenline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subway Lines</td>
<td>5,259</td>
<td>5,891</td>
<td>5,927</td>
<td>6,188</td>
<td>96%</td>
<td>668</td>
<td>146</td>
<td>2.2%</td>
</tr>
<tr>
<td>All Other Lines</td>
<td>1,409</td>
<td>1,830</td>
<td>1,588</td>
<td>1,837</td>
<td>86%</td>
<td>179</td>
<td>39</td>
<td>2.2%</td>
</tr>
<tr>
<td>Subtotal</td>
<td>6,668</td>
<td>7,721</td>
<td>7,515</td>
<td>8,025</td>
<td>94%</td>
<td>847</td>
<td>185</td>
<td>2.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21,871</td>
<td>26,059</td>
<td>26,123</td>
<td>29,659</td>
<td>88%</td>
<td>4,252</td>
<td>634</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

Notes: Capacity = design capacity x number of scheduled bus trips, Capacity Utilization = passenger demand / capacity.

Other: Totals may not add due to rounding.

a. Future demand, capacity and capacity utilization do not include the 49-line.
There may be changes in MUNI ridership among the lines in the vicinity of the North Beach/Chinatown campus. For example, students currently take #30 to the 940 Filbert Street campus may shift to #9, #9AX and #9BX because these lines will have stops on Kearny Street at Jackson Street, almost in front of the Proposed Project. These changes would not have adverse effects on overall transit conditions.

Loading Impacts

Loading impacts for the Project are analyzed separately below in terms of supply versus demand and supply versus Planning Code requirement.

Loading requirements for the Project were calculated based on the San Francisco Planning Code, Section 152, which requires one loading space for 100,000-200,000 gsf. The 172,454 gross-square-foot Project would require one loading space.

The Project would generate approximately 17 daily truck trips, which equals a peak-period loading demand (10:00 a.m. to 1:00 p.m.) of approximately 0.98 spaces, or one space, and an average hour loading demand (8:00 a.m. to 5:00 p.m.) of approximately 0.78 spaces (one space). Most deliveries would be made with service delivery single unit trucks or vans that would be less than 25-feet long. Most deliveries in San Francisco occur between 10:00 a.m. and 1:00 p.m. and nearly all occur before the 4:00 p.m. peak traffic period. Therefore, there may be occasions when delivery vehicles overlap and this may cause some short-term double-parking on the street.

The Project would not provide any off-street loading spaces and would not comply with the Planning Code requirement. The District would seek approval for a 45-foot long yellow on-street loading zone on Washington Street to meet the loading demand.

Trash and recycling collection would take place from a central location in the service area from the freight elevator at the southeast corner of the building. Trash would be collected from each floor and deposited in the designated bins in the service area. All trash would then be moved to the loading area for pick-up midblock on Washington Street.

5 The Transportation Study notes that MUNI 15 was replaced by 9X, 9AX, and 9BX, effective April 7, 2007.
Construction Impacts

Impacts associated with construction activities are not considered significant, as they are temporary and of short-term duration. Construction impacts are discussed with respect to the following:

- Traffic due to possible lane closures and truck routing,
- Parking supply,
- Pedestrian pathways due to sidewalk closures, and
- MUNI bus operations due to lane closures.

Months 1, Demolition: The existing parking lot would be removed. There would be at maximum eight trucks per day with 5 to 10 workers going to the site each day. Approximately 250 cubic yards of debris would be removed from the site.

Months 2 to 4, Excavation: Approximately 14,200 cubic yards of material would be removed during this stage. Approximately 40 to 70 trucks per day with approximately 5 to10 workers a day would be destined to the Project Site.

Months 5 to 6, Foundation: The foundation work would begin in the fifth month. During this period, there would be approximately 20 to 40 workers traveling to and from the site.

Months 7 to 14, Superstructure: During this period, the façade would be completed. During this period, there would be approximately 10 to 20 truck trips per day with approximately 40 to 60 workers.

Months 14 to 26, Interior: Interior finishing would require approximately 15 to 30 trucks per day with approximately 120 to 200 workers.

Most construction equipment and material would be stored onsite, except during the superstructure and interior phases when some materials would be stored off-site. Sidewalk barriers and brides would also be erected on Washington and Kearny Streets in the parking lanes for pedestrian passage and the sidewalks would be used for a drive lane in the construction site.
Construction workers would need to find parking in nearby streets or the Project Sponsor would have to make off-street parking arrangements in the area.

There would be a loss of public parking spaces with the removal of the parking lot at the Project Site. Table 4, p. III.D-8, shows that there is available parking capacity in the vicinity of the Project Site to absorb this loss as well as the loss of several on-street parking spaces that would be occupied during the construction period. No MUNI bus stops would be affected by construction activity.

If construction of the Proposed Project occurs simultaneously with other projects in the area, disruptions to traffic and transit operations could potentially occur. The contractor and the Project Sponsor would work with the Department of Public Works, Department of Parking and Traffic, MUNI, and the project sponsors of the neighboring projects to coordinate construction schedules so that impacts may be minimized.

As noted above, impacts associated with construction activities are not considered significant, as they are temporary and of short-term duration. However, improvement measures are included below which may further reduce temporary construction impacts.

Future (Year 2020) Cumulative Conditions

For the future year 2020 cumulative traffic conditions, intersection turning movement volumes were based on a one percent per year compounded growth rate was used in the absence of an area-wide cumulative forecast per *SF Guidelines*.

Table 17 shows the LOS for the Existing, Existing Plus Project and the Future (2020) Cumulative conditions. Under Future Cumulative conditions, all of the study intersections currently operating above B are expected to continue operating above LOS B with no significant effects at those intersections.
III. Environmental Setting and Impacts

D. Transportation

TABLE 17
INTERSECTION LEVEL OF SERVICE: EXISTING, EXISTING PLUS PROJECT, AND FUTURE CUMULATIVE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay</td>
<td>LOS</td>
<td>Delay</td>
</tr>
<tr>
<td>Washington St./Montgomery St./</td>
<td>11.5</td>
<td>B</td>
<td>11.4</td>
</tr>
<tr>
<td>Columbus Ave.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearny St./Washington St.</td>
<td>9.2</td>
<td>A</td>
<td>9.2</td>
</tr>
<tr>
<td>Kearny St./Jackson St.</td>
<td>10.0</td>
<td>A</td>
<td>10.4</td>
</tr>
<tr>
<td>Jackson St./Columbus Avenue</td>
<td>15.5</td>
<td>B</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Source: CHS Consulting Group, 2007.

Note: Shows LOS conditions under typical operating conditions and with full compliance of the bus only lane. PHF factor of 0.95 was used for all future cumulative analysis. (reference: Westernite Publication Vol. 56, No. 6)

IMPROVEMENT MEASURES

Although the Project would not have significant parking, loading, or construction impacts, the following measures are recommended to further reduce impact beyond their already less-than-significant level.

As noted above, parking shortfalls relative to demand are social effects (i.e., primarily an inconvenience to drivers), which do not constitute impacts on the physical environment, as defined by CEQA. Faced with severe parking shortages, drivers generally seek and find alternative parking facilities or shift to different modes of travel (e.g., public transit, taxis, or bicycles).

Parking Impacts

Five percent of students and 44 percent of faculty/employees drive to the Chinatown/North Beach Campus. The Project would not meet its estimated parking demand for most of the day. As presented in the Transportation Section, the Project-generated deficit can be accommodated in the available spaces in the vicinity. In order to further reduce the parking demand or reduce the parking deficit, the District should consider strategies to at least maintain the current transit share.
and incentives to potentially further increase transit usage by faculty/employee and students and rideshare effort to reduce faculty/employee drive mode.

Improvement Measure D-1: Transportation Demand Management. To further reduce the parking demand or reduce the parking deficit, the District would implement a Transportation Demand Management program (TDM). The following programs are under consideration by CCSF: on-site sale of transit passes, making transit information available to the users, a Car Share program, and 511 Regional Rideshare participation. CCSF is in discussion with MUNI about the possibility of establishing a new Class Pass for students. Also in consideration is the implementation of commuter check program to its faculty/employees.

Bicycle Impacts

The District has included in the architectural plan for the Project 70 bicycle parking spaces in the basement level. This would promote the use of bicycling to and from the Project.

Loading Impacts

The Project would not meet the loading demand or the San Francisco Planning Code’s loading space requirement for the Project.

Improvement Measure D-2: Loading Zone. The District would seek an approval for a 45-foot yellow loading zone in order to meet the loading demand.

Improvement Measure D-3: Garbage Service. In order to avoid garage bins being stored on the sidewalks, the District would make an arrangement with the Waste Management company to pick up the garage bins from the garbage room.

Construction Impacts

Although construction impacts would be temporary and of relatively short duration, the following improvement measures would lessen their impacts:
Improvement Measure D-4: Construction. Any construction traffic occurring between 7:00 a.m. and 9:00 a.m. or between 3:30 p.m. and 6:00 p.m. would coincide with peak-period traffic and could impede traffic flow. To the extent possible for the Project, truck movements should be limited to the hours before 3:30 p.m.

The Project Sponsor and construction contractor(s) would meet with the Traffic Engineering Division of the Department of Parking and Traffic, the Fire Department, and the Department of Public Works to determine feasible traffic mitigation measures to reduce traffic congestion and pedestrian circulation impacts during construction of the Project. In addition, to ensure that construction activities do not impact MUNI bus stops or routes in the area, the Project Sponsor should coordinate with MUNI’s Chief Inspector prior to construction.
E. GEOLOGY AND SOILS

SETTING

This section provides the geologic and soils information needed to evaluate potential ground shaking and liquefaction hazards for the Project. This discussion is based on geologic and soils information included in the Geologic Hazard Evaluation and Geotechnical Investigation¹ (geotechnical study) prepared for the Project Site, site assessments of subsurface conditions for previous project proposals, and existing regional, state, and federal publications. Technical terms are defined in Appendix B.

SEISMIC HAZARDS

Ground Shaking

Seismic ground motions range from very low intensities which cannot be detected, except by specialized equipment, to high intensities which can cause buildings to be shaken apart and heavy objects to be thrown into the air. The effects of seismically induced ground shaking on buildings result from a combination of surface (soil) conditions, the relative stiffness of subsurface geologic units, and the quality of construction at the site. A single earthquake can create the entire range of effects, depending on the moment magnitude, the site’s distance from the epicenter of the earthquake, the geologic conditions at the site, and the foundation and structural design of the buildings on the site.

Generally, the intensity of ground shaking increases with proximity to the source of the earthquake. However, given similar location and seismic energy output, vibrations would be least damaging at sites on bedrock. Sites underlain by sediments (such as fill, Bay Mud, and marine deposits) would experience more severe damage because of the sediments’ tendency to deform to a greater degree than the bedrock. For structures built on sediments or unengineered fill, the combination of ground deformation and susceptible building design (including foundation design)

¹ Treadwell & Rollo, *Geological Hazard Evaluation and Geotechnical Investigation City College of San Francisco Chinatown/North Beach Campus*, November 1, 2006.
determines the extent of damage. Well-constructed buildings founded on dense, undisturbed native deposits perform considerably better than moderately or poorly constructed buildings on unengineered fill. Pile foundations supported by firm sediments or bedrock perform better during seismic vibration than structures supported on soft sediments.

Liquefaction

In San Francisco, the potential for liquefaction (a response to severe ground shaking that can occur in loose soils, further defined in the Appendix B glossary) poses a hazard in areas of old artificial fill for two reasons: lack of fill compaction and lack of fill content control. Much of the old artificial fill was placed in former waterfront areas before modern engineering methods of compaction were developed or known to be needed. Essentially, any available material was dumped at the shoreline or in sloughs until new land rose above the high-tide level. The result was a loose, saturated deposit composed of irregular pockets of sand, gravel, rock, brick, lumber, and other disposed material. Almost any building weight caused the fill to consolidate. The fill also settled under its own weight. During seismic ground shaking, vibration can cause this type of fill to liquefy under certain conditions of saturation. Such conditions do not exist throughout all filled areas, but because there is no records of what materials were used as fill at most sites along the former shoreline, only site-specific geotechnical investigations can demonstrate the presence or absence of liquefiable material. The fill in the vicinity of the Project Site is loose material, some of which is subject to liquefaction.

3 California Division of Mines and Geology, State of California Seismic Hazard Zones, City and County of San Francisco, Official Map, released November 17, 2000, scale 1:24,000.
PROJECT SITE CHARACTERISTICS

Subsurface Conditions

The Project Site is underlain by approximately 13.5 feet of fill, primarily consisting of sandy fill and debris. The fill is underlain by heterogeneous layers of sand, silty and clayey sand, and sandy clay to the depths explored in the geotechnical study. Relative density and strength of the sand increase with depth. Isolated, thin, random layers of medium stiff to stiff silt and clay were encountered within the sand layers. Perennial groundwater levels at the site were estimated at about 13 to 18 feet below the existing ground surface.\(^4\) During dewatering activities at an adjacent site, an old basement foundation from a previous building was found at the Project block. Franciscan Complex bedrock has been encountered at approximately 160 feet below ground surface.\(^5\)

Ground Shaking

During a major earthquake on one of the nearby faults, strong shaking is expected to occur at the Project Site. The Association of Bay Area Governments’ computer models of expected earthquake damage indicate that an M\(_W\) 7.1 earthquake on the Peninsula segment of the San Andreas Fault would cause moderate structural damage (Modified Mercalli (MM) Intensity VIII, defined in the glossary) in the vicinity of the Project Site. An M\(_W\) 7.3 earthquake that ruptured the entire length of the Hayward fault would cause heavy structural damage (MM Intensity IX) in the vicinity of the Project Site.\(^6\)

Based on the evaluation of subsurface soils at adjacent sites, there may be loose to medium dense sandy layers at the Project Site that will undergo liquefaction, lateral spreading, and differential compaction during strong shaking.\(^7\)

\(^4\) Treadwell & Rollo, *Geological Hazard Evaluation and Geotechnical Investigation City College of San Francisco Chinatown/North Beach Campus*, November 1, 2006.

\(^5\) Treadwell & Rollo, *Phase I Environmental Site Assessment, City College Chinatown/North Beach Lots 9 and 10 of Assessor’s Block 195*, May 4, 2005.

\(^7\) Treadwell & Rollo, *Geological Hazard Evaluation and Geotechnical Investigation City College of San Francisco Chinatown/North Beach Campus*, November 1, 2006.
REGULATORY BACKGROUND

Seismic Hazard Zones

Two major pieces of state legislation regulate construction near active fault traces: the Alquist-Priolo Earthquake Fault Zoning Act\(^8\) and the Seismic Hazards Mapping Act.\(^9\) The purpose of the Earthquake Fault Zoning Act is to reduce the hazards posed by surface rupture of a fault. The Project Site is not in an Alquist-Priolo Earthquake Fault Zone, and no earthquake fault zones trend toward the site.\(^10\) Consequently, there is little likelihood of surface rupture of a fault within the vicinity of the Project Site.

The purpose of the Seismic Hazards Mapping Act is to provide safeguards to the public from the effects of strong ground shaking, liquefaction or other ground failure, and other hazards caused by local conditions during earthquakes. The Act requires the State Geologist to delineate the various seismic hazard zones and requires that “cities and counties, or other local permitting authority regulate certain development projects within the zones. [These agencies] must withhold the development permits for a site within the zone until a geotechnical evaluation is conducted and appropriate mitigation measures have been incorporated into development plans.”\(^11\) The Project Site is in a liquefaction hazard zone, as designated on the Seismic Hazard Zones Map.\(^12\)

Building Codes

The State of California provides a minimum standard for building design through the California Building Code (CBC). The CBC is based on the Uniform Building Code (UBC) with amendments for California conditions.

\(^12\) California Division of Mines and Geology, State of California Seismic Hazard Zones, City and County of San Francisco, Official Map, released November 17, 2000, scale 1:24,000.
Chapter 23 of the CBC contains specific requirements for seismic safety. Chapter 29 of the CBC regulates excavation, foundations, and retaining walls. Chapter 33 of the CBC contains specific requirements pertaining to site demolition, excavation, and construction to protect people and property from hazards associated with excavation cave-ins and falling debris or construction materials. Chapter 70 of the CBC regulates grading activities, including drainage and erosion control. Construction activities are subject to occupational safety standards for excavation, shoring, and trenching as specified in Cal-OSHA regulations (Title 8 of the California Code of Regulations [CCR]) and in Section A33 of the CBC. The Field Act, described below, establishes more stringent seismic safety standards for public school buildings.

The Department of the State Architect (DSA) would review the Project drawings and issue the permit for construction. The DSA would ensure that the Project construction drawings comply with all applicable provisions of the State Building Code governing schools.

Field Act

The Field Act (Education Code Sections 17280–17317 and 81130–81149) is intended to protect life, encourage school safety, and enable school buildings to resist earthquakes to the extent practicable. According to Title 24, Part 1 of the California Building Standards Administrative Code, “School buildings constructed pursuant to these regulations are expected to resist earthquake forces generated by major earthquakes of the intensity and severity of the strongest experienced without catastrophic collapse, but may experience some repairable architectural or structural damage.”

The Field Act requires compliance with the following steps.13

1. School building construction plans must be prepared by qualified persons who are familiar with the principles of safe building construction (i.e., California licensed structural engineers and architects).

2. Designs must be checked by the Department of General Services (an independent state agency) and design errors or omissions must be corrected or included on the plans before a contract for construction is executed.

3. Construction must be continuously inspected by a qualified person who is independent of the contractor, hired by the school district, and who shall verify full compliance with the plans.

4. The responsible architects and/or structural engineers must observe construction periodically and prepare changes to plans if needed (and subject to acceptance of Division of the State Architect (DSA)) to overcome unforeseen field conditions.

5. All parties concerned (architects, engineers, inspectors, and contractors) must file reports, under penalty of perjury, to verify compliance of the construction with the approved plans.

IMPACTS

SIGNIFICANCE CRITERIA

The Project would have significant geologic impacts if it would create unacceptable risks of personal injury or property damage associated with seismic ground shaking, seismic-related ground failure (such as liquefaction), or other geological hazards (such as expansive soils).

As noted above, a report describing the specific geotechnical conditions of the Project Site was prepared by the District’s geotechnical investigation team in November 2006.14

Ground Shaking

This impact discussion focuses on the special circumstances related to ground shaking and liquefaction. The seismic safety provisions of the currently applicable CBC must be met by all construction projects under the state’s jurisdiction. The provisions of the CBC pertain to the basic structure of each building, such as the foundation design and placement, the building design and construction, and certain non-structural issues (such as wall-cladding anchorage). The CBC includes special requirements for certain high-occupancy uses and emergency response facilities, such as educational institutions and hospitals, and special requirements for securing large or heavy equipment. Strict enforcement of the seismic standards is the minimum requirement for the Project to reduce the chance of injury to people in or near the proposed building during a major earthquake. Such enforcement reduces regulated hazards to an acceptable level.

14 Treadwell and Rollo. Geologic Hazard Evaluation and Geotechnical Investigation, City College of San Francisco Chinatown/North Beach Campus, November 1, 2006. This report is on file at the District’s office at 33 Gough Street and available by appointment for public review.
During the useful economic life of the Project (at least 50 years), it is probable that the site will be subjected to at least one major earthquake which would create peak ground accelerations in excess of 0.5g throughout the Bay Area. Because the Project Site is underlain partly by deposits of Bay Mud and partly by dense sandy silt, it will respond differentially to these seismic vibrations.

The geotechnical study, as required by the CBC, includes a site-specific probabilistic seismic hazard analysis and establishes foundation design criteria. If the structure were not properly designed, this level of ground shaking could cause damage to structural elements of buildings and utility lines (twisting, breakage, debris shedding) and could cause associated ground failure, such as liquefaction, that could lead to tilting or settlement of foundations (liquefaction effects are discussed further below). All of these effects would pose risks of injury or death to people in or near the affected structure. As noted above, the geotechnical study includes recommendations for seismic-restraint systems to be built into the foundations and structures at the Project Site; these recommendations would be incorporated into the Project.

Seismic vibration at the Project Site would be accounted for in the recommendations to be incorporated in the plans and specifications of the Project. Incorporation of these recommendations would prevent substantial ground shaking damage to structural elements. Consequently, the risk of incurring direct (structural damage) and secondary (exposure of people to seismic hazards) damage from ground shaking would be reduced to an acceptable level by compliance with the existing regulations applicable to the Project. With risks reduced to an acceptable level by existing regulations, there would be no significant adverse impacts and no mitigation would be necessary.

Liquefaction

Recent analyses of sites in San Francisco underlain by substantial thicknesses of unengineered fill and Bay Mud indicate that seismically induced peak ground accelerations of 0.2g or higher could cause liquefaction of some of the saturated subsurface fill materials. During such an earthquake, as much as one foot of liquefaction-induced settlement could occur in deep fills, and abrupt liquefaction-induced differential settlement probably would occur in the vicinity of old timber piles along former shorelines. Structures supported on liquefiable materials could tilt or settle.
rapidly, thereby exposing occupants to injury or death. Deep foundations (such as pile-supported foundations or deep mat foundations) are necessary for major structures throughout the vicinity of the Project Site to prevent the effects of liquefaction.15

In the vicinity of the Project Site, piles are supported on the bedrock in places where it is close enough beneath the ground surface to be reached easily. Where this is not the case, piles gain support by friction developed between the surface of the pile and the dense sandy and clayey sediments below the Bay Mud. The geotechnical study recommends a mat foundation with the northern edge supported on drilled piers to prevent surcharging the adjacent property, the St. Mary’s Center Garage basement wall. The foundations would be designed to resist uplift pressures from groundwater and to minimize differential settlement between heavily and lightly loaded structural elements. No driven piles or pile driving is anticipated for the Project.

The CBC requires the use of site-specific support factors (as designated in the Building Code) in the modeling that establishes the design of pile-supported or deep mat foundations at the Project Site. Levels of seismic vibration at the Project Site that could cause liquefaction would be accounted for in the resultant design recommendations, which would be incorporated in the plans and specifications of the Project. Incorporation of these recommendations would prevent substantial liquefaction damage to the structures by isolating them from any underlying liquefiable materials. Consequently, the risk of incurring direct (structural damage) or secondary (exposure of people to seismic hazards) damage from liquefaction would be reduced to an acceptable level by compliance with the existing regulations applicable to the Project. Therefore, there would be no significant adverse impacts and no mitigation would be necessary.

\textbf{Expansive Soils}

Expansive soils, such as the clays that may underlie the Project Site, shrink when dry and swell when wet, creating the potential to deform or shift building foundations, thus causing damage to structures supported on them. This reaction, which is common to many clays in the Bay Area, is

15 Treadwell and Rollo. \textit{Geologic Hazard Evaluation and Geotechnical Investigation}, City College of San Francisco Chinatown/North Beach Campus, November 1, 2006. This report is on file at the District’s office at 33 Gough Street and available by appointment for public review.
mitigated readily through standard geotechnical practices, such as removal of the expansive soils and replacement with engineered fill, or recompaction of the expansive material. The procedures are familiar to contractors in the Bay Area. The CBC requires treatment of expansive soils as part of its grading standards (Chapter 18, Foundations and Retaining Walls, and Chapter A33, Excavation and Grading). Compliance with the requirements in the CBC eliminates expansive soils as a potential threat to building foundations, irrespective of the depth of the foundation excavation. Consequently, the direct results of soil expansion (structural damage) and its potential secondary results (exposure of people to structural hazards) would be reduced to an acceptable level by the existing regulations applicable to the Project. Therefore, there would be no adverse impact, and no mitigation would be necessary.

Cumulative Impacts

Environmental effects related to geology and soils are generally site-specific and depend on each project’s design and site conditions. Such impacts do not accumulate among projects. Thus, the Project would have no cumulative impact related to geology and soils.
F. HAZARDS AND HAZARDOUS MATERIALS

This section addresses hazards as they relate to possible soil and groundwater conditions at the Project Site. The Project would generate common types of hazardous materials, such as cleaning and maintenance materials, in the small quantities common for any building of its size and use. None of the educational uses planned for the Chinatown/North Beach Campus are anticipated to generate out-of-the-ordinary types or amounts of hazardous materials. The generation, use, and disposal of common hazardous materials, such as paints and cleaning materials, are restricted by applicable regulations. Therefore, such uses would not result in a significant impact.

The description of site conditions is based on the Phased I Environmental Site Assessment (ESA) prepared for Lots 9 and 10 in May 2005 and the Soil and Groundwater Investigation and Management Plan prepared for 800 Kearny Street in July 2005. The reports include results from a Phase I ESA prepared for Lots 4 and 5 in April 1995; a hazardous materials investigation at Lots 4, 5, and 12 in May 1997; and geotechnical investigations at Lots 4 and 5 in May 2003.

SETTING

Project Site

Soil Conditions

The Project Site is underlain by approximately 13.5 feet of fill. The fill generally consists of sandy fill and debris. The upper layer is commonly referred to as earthquake fill that resulted from the 1906 earthquake and fire. Earthquake fill typically contains elevated concentrations of metals and petroleum hydrocarbons. The historical San Francisco Bay shoreline was previously near Montgomery Street, east of the Project Site, indicating that the sandy clay may be an old marsh deposit.

1 Treadwell & Rollo, Phase I Environmental Site Assessment, City College Chinatown/North Beach, Lots 9 and 10 of Assessor’s Block 195, May 4, 2005.
2 Treadwell & Rollo, Soil and Groundwater Investigation and Management Plan, City College Chinatown/North Beach Campus, 800 Kearny Street, July 25, 2005.
The fill is generally underlain by heterogeneous layers of sand, silty and clayey sand, and sandy clay to the depths explored in the geotechnical study. Relative density and strength of the sand increase with depth. Isolated, thin, random layers of medium stiff to stiff silt and clay were encountered within the sand layers. Franciscan Complex bedrock has been encountered at approximately 160 feet below ground surface.

Groundwater data available from the adjacent St. Mary’s School project and other projects to the south and east indicate the groundwater table slopes down toward the southeast.

Underground Storage Tanks

The Project Site has been developed since at least 1887, based on a survey of Sanborn maps. The New Western Hotel was present at the Project Site in at least 1899. Although there is no visual evidence of any underground storage tanks (USTs) at the Project Site, numerous USTs have been identified in the vicinity. In addition, it was historically common practice to install USTs for heating oil beneath sidewalks. Therefore, based on the previous uses at the Project Site, an UST may be present beneath the sidewalk in front of the Project Site.

The Phase I ESA for Lots 4 and 5, prepared in April 1995, revealed the presence of a 1,500-gallon fuel oil tank and 350-gallon gasoline tank on Lot 4, and a 1,500-gallon fuel oil tank on Lot 5. The tanks and associated piping were removed on July 18 and August 8, 1996 by KTW & Associates in accordance with the San Francisco Department of Public Health (SFDPH) and San Francisco Department of Public Works (SFPW) regulatory requirements. A Notice of Completion was received from SFDPH on April 3, 1997. Subsequent investigations at Lots 4 and 5 found no volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total recoverable petroleum hydrocarbons (TRPHs), polynuclear aromatic hydrocarbons (PNAs), total petroleum hydrocarbons qualified as gasoline (TPH-g), or polychlorinated biphenyls (PCBs) in soil samples. Lead levels were below the hazardous waste criteria. Based on the UST closure granted by the SFDPH and based on subsequent testing of the site, it is unlikely that soil or groundwater at the Project Site has been affected.
Soil and Groundwater Quality

Pursuant to the preparation of the Phase 1 ESA, Treadwell & Rollo conducted soil and groundwater testing at the Project Site. Soil samples were tested for lead, other metals, and petroleum hydrocarbons and other organic compounds. No lead concentrations exceeded the established Total Threshold Limit Concentration (TTLC) hazardous waste level for any sample. The soil testing did find lead concentrations in excess of California’s Soluble Threshold Limit Concentration (STLC), but less than the federal soluble lead hazardous waste criterion. As such, soil in certain locations of the Project Site must be disposed of as a California hazardous waste material. None of the other metals detected had concentrations in excess of the TTLC hazardous waste level. The petroleum hydrocarbon concentrations at the Project Site are generally low and are not likely a significant concern.

Groundwater samples from the Project Site were tested for petroleum hydrocarbons, volatile organic compounds (VOCs), and soluble metals. The groundwater testing found that the groundwater beneath the Project Site has not been impacted by any on or off-site activities. The groundwater sample did not exceed the San Francisco Public Utilities Commission disposal threshold for direct disposal into the City’s combined sewer system.

Review of Public Records

A government records report prepared for the Project Site by Environmental Data Resources, Inc. (EDR), indicated that the Project Site was not listed on any of the regulatory agency databases. No records were found at the San Francisco Department of Public Health regarding fuel or hazardous materials releases at the Project Site.
The Project Site is not listed on the *State of California Hazardous Waste and Substances Sites List* prepared pursuant to Government Code Section 65962.5;\(^3\) it is not located bayward of the historic high tide line as defined for purposes of San Francisco’s Maher Ordinance.\(^4\)

Surrounding Properties

Three properties in the vicinity of the Project Site were identified on a regulatory database. 850 Kearny Street, immediately north of the Project Site, was listed on the Leaking Underground Storage Tank (LUST) database; closure was granted by SFDPH in January 1997. 750 Kearny Street, south of the Project Site across Washington Street, is listed on the LUST and Cortese databases; closure was granted by SFDPH in January 2004. 733 Kearny Street, southwest of the Project Site, was listed on the LUST and Cortese databases; closure was granted by SFDPH in January 2004. Based on these properties location relative to the Project Site and their closure status, they are unlikely to have adversely affected the soil or groundwater at the Project Site.

REGULATORY CONTEXT

The California Department of Toxic Substances Control and the San Francisco Bay Regional Water Quality Control Board identify standards for soil and groundwater remediation. The San Francisco Department of Public Health oversees many locally enforced state and federal hazardous waste regulations, including those applicable to hazardous waste generators.

IMPACTS

Significance Criteria

An activity related to demolition or construction that could expose persons or the environment to hazardous materials or to groundwater or soil containing hazardous materials at concentrations in excess of applicable state and federal guidelines would have a significant environmental effect.

Environmental Effects Related to Site Conditions

As described above, the Project Site has been tested for groundwater and soil contamination. Soil would be encountered during excavation activities. Based on the lead soil sample testing, portions of the fill proposed for excavation, approximately 1,575 tons, would require disposal as a California hazardous waste. The remainder of the fill at the Project Site, approximately 9,923 tons, could be disposed of at a Class II non-hazardous waste landfill. Low levels of petroleum hydrocarbon were also detected in the soil samples. Although not of significant concern, worker health and safety procedures should address exposure to petroleum hydrocarbons during fill excavation at the Project Site. Furthermore, Mitigation Measure F-1, provided below under Mitigation Measures, has been recommended to ensure the potential impacts regarding contaminated soil or groundwater remain less than significant.

During construction activities, dust control measures would be implemented to reduce exposure to contaminated soils (see Mitigation Measures AQ-1 on p. III.I-13 in Section III.I, Air Quality). These measures, implemented by the excavation contractor, could include moisture-conditioning the soil, using dust suppressants, or covering the exposed soil with plastic sheeting.

The groundwater at the Project Site was found to be below federal, state, and local standards for hazardous materials. Since none of the samples exceeded the San Francisco Public Utilities Commission disposal threshold, any groundwater pumped during site excavation could be directly disposed into the City’s combined sewer system.
III. Environmental Setting and Impacts
F. Hazards and Hazardous Materials

The lead and petroleum hydrocarbons present at the Project Site could present health and safety risks to the construction workers, nearby residents, and future users of the Project Site. Potential chemical exposure could occur through three pathways: (1) skin contact with the soil, (2) inhalation of dusts and/or vapors, and (3) ingestion of the soil. The most likely potential for human exposure to the chemicals in the soil would be during soil excavation and grading operations, and groundwater pumping. Existing state law, including California Code of Regulations Title 8, Cal-OSHA, would require the implementation of appropriate protective measures, which could include personal protective equipment, air monitoring, etc.

Because on-site materials may contain lead and other chemicals in excess of Proposition 65 guidelines, proper health and safety procedures, as well as warning requirements, should be implemented during construction. The potential health risk to on-site construction workers would be minimized by a comprehensive health and safety plan (HSP) prepared by a certified industrial hygienist who represents the site contractors. The site contractor would be responsible for establishing and maintaining proper health and safety procedures to minimize worker and public exposure to site contaminants during construction.

The HSP would describe the health and safety training requirements, specific personal hygiene, and monitoring equipment to be used during construction to protect and verify the health and safety of construction workers and the general public from exposure to constituents in the soil and groundwater. It could also be necessary to conduct air monitoring to evaluate the amount of airborne contaminants during grading.

A site health and safety officer (HSO) should be on site at all times during excavation activities to ensure that all health and safety measures are maintained. The HSO would have the authority to direct and stop (if necessary) all construction activities in order to ensure compliance with the HSP.

Compliance with all applicable hazardous materials laws would ensure that the Project would not expose persons or the environment to hazardous materials concentrations in excess of state and federal guidelines.
Cumulative Impacts

As described above, the Project block is not known to be underlain by contaminated soil or groundwater. While the Project Site has lead concentrations in excess of California’s 5 TLC, Mitigation Measure F-1 would reduce this impact to a less-than-significant level. However, Mitigation Measure F-1 has been recommended to ensure the potential impacts regarding contaminated soil or groundwater remain less than significant. As such, other development in the Project vicinity and a potential building on Lot 5 would not result in any significant hazard related to existing contamination. There would be no cumulative impact.

MITIGATION MEASURES

The following mitigation measure shall be implemented to ensure that potential impacts regarding contaminated soil and groundwater remain less than significant.

Mitigation Measure F-1: Soil Excavation. At the time of excavation, excavated soils will be tested and classified and treated and/or reused on site and/or disposed of at an appropriate facility in accordance with determinations made and approved by the San Francisco Department of Public Health (SFDPH) and/or a State agency in accordance with a Soil Excavation Plan (SEP) to be approved by SFDPH or the designated State agency. Reuse of contaminated soils on-site may require a risk assessment to determine potential effects to future site occupants and/or occasional utility maintenance workers.
G. SHADOWS

SETTING

The Project Site is surrounded by development, including high-rise buildings to the south and east. The existing low-, mid-, and high-rise buildings around the Project currently create substantial shadows, as shown in Figures 21 through 25.

Public open space in the Project vicinity that could be affected by Project shadows include Portsmouth Square, southwest of the Project Site, Maritime Plaza, three blocks east of the Project Site and St. Mary’s Square, three blocks south of the Project Site. All three parks are under the jurisdiction of the Recreation and Park Department. There are no buildings on the Project Site; thus, none of the existing shadows cast on Portsmouth Square are from the Project Site.

IMPACTS

Significance Criteria

Criteria for determining the potential significant adverse impacts of shadows cast on a public open space vary, but generally include whether the area affected by shade is a public open space, the use of the open space, and the time of day and duration of the new shadow. The criteria are generally used to determine whether the use of the open space would be substantially altered by new shade. In 1984, San Francisco voters adopted Proposition K, codified as Planning Code Section 295, which requires the Planning Commission to determine whether new shadows cast by new structures or additions to structures on property under the jurisdiction of, or designated to be acquired by, the Recreation and Park Department, between one hour after sunrise and one hour before sunset at any time of year, would have a significant effect.

Although the District may opt not to be subject to the jurisdiction and approval processes of the City and County of San Francisco, the shadow analysis for the Project uses the same
methodology used by the Planning Department to determine the amount of new shadow cast on a public open space.

Project Effects

A shadow analysis was conducted to evaluate the Project’s potential effects on the Project vicinity.1 Figure 20 is a shadow fan identifying the maximum extent of all Project-related shadows from one hour after sunrise to one hour before sunset for an entire year. Figure 20 does not account for existing buildings and shadows. Shadow patterns for existing and approved buildings in the Project area, along with patterns for the Project, are shown in Figures 21 through 25. These figures illustrate representative times of the day during the four seasons: during winter and summer solstices, when the sun is at its lowest and highest, and during spring and fall equinoxes, when the sun is at its midpoint. Shadow conditions from July through December essentially mirror conditions from January through June. The times selected for analysis include 10:00 a.m., noon, and 3:00 p.m. Pacific Standard Time (PST) for December, and Pacific Daylight Time for June and September. (March is shown for PST, although as of 2007, March 21 is PDT).

The shadow analyses show that the Project would not add shade to Portsmouth Square on any day throughout the year during the hours of 10:00 a.m. to 3:00 p.m. As discussed below under “Effects on Open Space,” the Project would add shade to the northwest corner of Portsmouth Square at an hour past sunrise from about May 10 to July 30 only, for periods between the hours of 6:45 a.m. and 7:45 a.m. (see Figure 25, June 21, One Hour after Sunrise). Based on the shadow analysis, the Project would not add any shade to Maritime Plaza or St. Mary’s Square.

1 The shadow analysis prepared by CADP Associates is on file at the District’s office at 33 Gough Street and available for public review.
FIGURE 21: PROJECT SHADOW PATTERN ON DECEMBER 21 (10 A.M., NOON, 3 P.M. PST)

CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

FIGURE 22: PROJECT SHADOW PATTERN ON MARCH 21 (10 A.M., NOON, 3 P.M. PST)

FIGURE 23: PROJECT SHADOW PATTERN ON JUNE 21 (10 A.M., NOON, 3 P.M. PST)

FIGURE 24: PROJECT SHADOW PATTERN ON SEPTEMBER 21 (10 A.M., NOON, 3 P.M. PST)

Shadows that would be contributed by an 84-foot building on Lot 5 are illustrated for informational purposes and present potential cumulative shadow effects. As discussed in the Project Description, the District has no plans to develop this site, but could, under terms of the 2005 Settlement Agreement, build up to 84 feet. A private party, under the Planning Code could develop a 65-foot building.

The analysis includes shadow cast on streets, sidewalks, pedestrian areas, and open space in the area of potential Project impact. For purposes of this analysis, existing shadow in these figures includes the current built environment and the new shadow that would be cast by the Project. In Figures 21 through 25, shadow from existing and approved buildings is shown in lighter shading, and darker shading represents the potential net new shade contributed only by the Project. The Project’s shadow boundary is outlined, and shows the maximum shade, as if there were no existing shade from intervening buildings.

The existing setting includes the recently completed 15-story International Hotel Senior Housing building (I-Hotel building) at the southeast corner of Kearny Street and Jackson Street, which is operational, and the five-story approved but not yet built St. Mary’s School building between the I-Hotel building and the Project Site.

December 21

Figure 21 shows that at 10:00 a.m. on December 21, the Project would cast new shadow on a small portion of Kearny Street and an adjoining sidewalk directly west of the Project Site.

At noon, the Project would cast shadow towards the I-Hotel building and the future five-story St. Mary’s School to the north, including the planned rooftop playground. The Project would also shade a small area of Columbus Avenue between Jackson Street and Pacific Street.

At 3:00 p.m., the Project would shade the site of the future St. Mary’s School adjacent to the Project Site, including the planned rooftop playground. The Project would also shade a small area of sidewalk on the north side of Jackson Street between Montgomery Street and Columbus Avenue.
III. Environmental Setting and Impacts
 G. Shadows

The Project would not add shade to Portsmouth Square, Maritime Plaza, or St. Mary’s Square at these times in December.

March 21

At 10:00 a.m. on March 21, the Project would add shade to a small area at the southwest corner of Kearny Street and Jackson Street, including some sidewalk and part of Kearny Street. Therefore, the shade contributed by the Project would be less than shown in Figure 22.

At noon, the Project would shade the future St. Mary’s School, including the planned rooftop playground.

At 3:00 p.m., net new shadow would fall on part of the future St. Mary’s School directly north of the Project Site, possibly including the planned rooftop playground. The Project would also shade a portion of Columbus Avenue between Washington Street and Jackson Street, including sidewalks on the northeastern side of Columbus Avenue.

The Project would not add shade to Portsmouth Square, Maritime Plaza, or St. Mary’s Square at these times in March.

June 21

At 10:00 a.m. on June 21, net new shadow would fall on the part of Kearny Street and adjoining sidewalks directly west of the Project Site.

At noon, net new shadow would fall on part of the site of the future St. Mary’s School, possibly including part the planned rooftop playground. The Project would also add shade to a small portion of the eastern side of Kearny Street and adjoining sidewalk between Washington Street and Jackson Street.

At 3:00 p.m., the Project would shade a small area directly north of the Project Site; the future St. Mary’s School would not be shaded.
The Project would not add shade to Portsmouth Square, Maritime Plaza, or St. Mary’s Square at these times in June.

September 21

At 10:00 a.m. on September 21, the Project would add shade to a small area at the southwest corner of Kearny Street and Jackson Street, including some sidewalk and part of Kearny Street. Therefore, the shade contributed by the Project would be less than shown in Figure 24.

At noon, the Project would add shade to part of the eastern side of Kearny Street near Jackson Street, including sidewalks, and part of the future St. Mary’s School site, including the planned rooftop playground.

At 3:00 p.m., net new shadow would fall on part of the future St. Mary’s School directly north of the Project Site, possibly including the planned rooftop playground. The Project would also shade a portion of Columbus Avenue between Washington Street and Jackson Street, including sidewalks on the northeastern side of Columbus Avenue.

The Project would not add shade to Portsmouth Square, Maritime Plaza, or St. Mary’s Square at these times in September.

Effects on Open Space

Portsmouth Square is an approximately 64,700 square-foot park in Chinatown, bordered by Clay Street to the south, Kearny Street to the east, Washington Street to the north, and Walter E. Lum Place to the west (see Figure 20). Portsmouth Square includes several levels that step down from west to east towards Kearny Street, with a plaza, benches, a play structure, and roofed open pavilions on the upper level. A lower level near Kearny and Clay also has a play structure and sandboxes. A wide, gated pedestrian bridge connects the upper level of the park to the Chinese Cultural Center housed in the Hilton Hotel on the east side of Kearny Street. Beneath the bridge is a senior center; a plaza with benches and open trellis features is in the northeastern part of the park, near Kearny Street and Washington Street. The edges of the park along Washington Street, Kearny Street and Clay Street include planted berms with
III. Environmental Setting and Impacts

G. Shadows

The Project would add shade to the northwest corner of Portsmouth Square at one hour after sunrise from about May 10 to July 30. All new shade would occur between the hours of 6:45 a.m. through 7:45 a.m. PDT. The maximum time of new shade on any given day would be between about 15 minutes and 45 minutes after the one-hour after sunrise threshold. The maximum effect would occur on June 21 at about 6:45 a.m., when the Project would shade approximately 5,021 square feet for about 14 minutes (see Figure 25). The shaded area, outlined in Figure 25, includes planted slopes adjacent to the Washington Street sidewalk and benches and landscaped areas near Washington Street and Walter E. Lum Place. The area near the benches has large Monterey pines and other mature trees. Figure 26 is a photograph of this area of the park. As the sun continues to rise, the shadow length and affected area would decrease. Within 45 minutes or less one-hour after sunrise, the sun would move to the south and shade from the Project would be completely off the park.

Based on observations of the park at different times of day, Portsmouth Square is heavily used by residents, for sitting, socializing, exercising, or walking. Visitors sit on benches with sun exposure and in the shade. Groups play cards in the roofed pavilions and in the plazas. Users were observed in morning periods before direct sun reached large areas of the park. Activities during morning periods include up to 20 persons exercising near the play structure near Clay Street that would not be shaded by the Project at any time. In April, one hour after sunrise, two or three persons were observed sitting on benches in the northwest corner of the park that were in the shade at those times.

As noted above, the Project would add shade to Portsmouth Square only between May 10 to July 30, and only for periods between the hours of 6:45 a.m. and 7:45 a.m. Based on these patterns of use, the limited time and location of new shade from the Project would not adversely affect park use. The Project would therefore not have significant shadow effects on Portsmouth Square.
FIGURE 26: NORTHWEST CORNER OF PORTSMOUTH SQUARE

The Project would increase the square-foot-hours of shade cast on Portsmouth Square by 0.03 percent annually, compared to available sun-square-foot-hours. As previously noted, if the City has jurisdiction over the Project, Section 295 of the Planning Code requires the Planning Commission to determine if the Project’s new shadow cast on open spaces under the jurisdiction of the Recreation and Park Departments would be a significant adverse effect on the use of the park; it does not prohibit all new shadow. The Planning Commission, at the urging of open space advocates in Chinatown, adopted guidelines with a zero percent limit for new shadows on Portsmouth Square. As noted above and in Chapter II, Project Description, the District could opt not to be exempted from the jurisdiction and approval processes of the City and County of San Francisco and thus may not be required to comply with the Planning Code, including Section 295.

Other Effects

The Project’s net new shading on street, sidewalks, and open space would be limited in scope, and would not increase the total amount of shading above levels that are common and generally accepted in urban areas or interfere with the use of Portsmouth Square. Overall, the Project would not have significant adverse effects on shadow conditions on public open space, streets, or sidewalks.

Cumulative Impacts

Cumulative conditions in the vicinity could include development of Lot 5 on the Project block. As discussed above and in the Project Description, the District has no plans to develop this site, but could, under terms of the 2005 Settlement Agreement, build up to 84 feet. A private party, under the Planning Code could develop a 65-foot building. Neither a 65-foot nor an 84-foot building on Lot 5 would create additional shading on Portsmouth Square; therefore, development on Lot 5 would not create cumulative shadow impacts on open space. Figures 21 to 25 illustrate an 84-foot building on Lot 5 for informational purposes.
H. WIND

SETTING

Data from the U.S. Weather Bureau and Bay Area Air Quality Management District show that average wind speeds in San Francisco are generally highest in the summer and least in the fall. The strongest winds generally occur in the afternoon, and the lightest in the early morning. The most frequent winds during all seasons in San Francisco are westerly to northwesterly winds. Wind direction is most variable in the winter, when the approach of storms often results in southerly winds. Although not as frequent as westerly winds, the southerly winds are typically the strongest winds in San Francisco.\(^1\)

Wind conditions affect pedestrian comfort on sidewalks and in other public areas. The comfort of pedestrians varies under different conditions of sun exposure, temperature, clothing, and wind speed. Winds up to 4 mph have no noticeable effect on pedestrian comfort. Winds from 4 to 8 mph are felt on the face. Winds from 8 to 13 mph disturb hair, cause clothing to flap, and extend a light flag mounted on a pole. Winds from 13 to 19 mph raise loose paper, dust and dry soil, and disarrange hair. The force of winds from 19 to 26 mph is felt on the body. With winds of 26 to 34 mph, umbrellas are used with difficulty, hair is blown straight, walking steadily is difficult, and wind noise is unpleasant. Winds over 34 mph make it difficult for a person to maintain balance, and gusts can blow a person over. The Project is being evaluated against these criteria.

Wind tunnel testing for the Project was conducted to determine potential design-specific impacts on pedestrian comfort, and to provide a basis for design modifications to mitigate these impacts if they were significant.

\(^1\) The U.S. Weather Bureau data used in this analysis were gathered at a weather station atop the Old Federal Building at 50 United Nations Plaza during the years 1945 through 1950. During each of these years, data were taken hourly for 16 wind directions. The database, consisting of 32,795 hourly observations, is of sufficient size to provide a reliable estimate of future wind conditions in San Francisco.
The comfort criteria are based on pedestrian level wind speeds that include the effects of turbulence. These adjusted wind speeds are referred to as “equivalent wind speeds.” Similar to Section 148 of the Planning Code, comfort criteria have an equivalent wind speed of 7 mph in public seating areas and 11 mph in areas of substantial pedestrian use for the microclimate analysis. New buildings and additions to buildings may not cause ground-level winds to exceed these levels more than ten percent of the time year round between 7:00 a.m. and 6:00 p.m.\(^2\)

Additionally, hazard criterion equivalent wind speed of 26 mph for a single full hour per year are used for the microclimate analysis. Under the Planning Code, a building or addition that would cause wind speeds to exceed the hazard level of more than one hour of any year must be modified to meet this criterion.

IMPACTS

Significance Criteria

As noted above, the Planning Code includes wind comfort and hazard criteria for wind impacts. The wind analysis for the Project uses the Planning Department methodology.

Under this methodology, a project would have a significant impact on the environment if it would cause equivalent wind speeds to reach or exceed the hazard criterion of equivalent wind speed of 26 mph for a single full hour of the year, or, in cases where the analysis finds existing exceedences of the hazard criterion, would increase the total number of hours per year of exceedences. A project that would cause exceedences of the comfort standards only would not be considered to have a significant impact.

Existing conditions

Using a wind tunnel and a 1:50 scale model of the Project Site and surrounding several blocks, pedestrian-level wind speed measurements were made at 21 existing test locations and (see

\(^2\) The Planning Code specifies the hours of 7:00 a.m. to 6:00 p.m. The available weather data cover the hours of 6:00 a.m. to 8:00 p.m. Therefore, observations from two additional evening hours and one additional morning hour are included in these data.
Figure 27). Tests were conducted for the Project Site under existing conditions, conditions with the Project, and conditions with the Project plus cumulative development.

The existing conditions included existing and approved buildings and structures in the project vicinity, including the five-story St. Mary's School building immediately north of the Project Site. The Project scenario includes existing conditions plus the Project. The cumulative scenario includes the Project scenario plus development on Lot 5.

Wind speeds currently exceed the Planning Code comfort criteria of 11 mph (more than 10 percent of the time) at 5 of the 21 sidewalk pedestrian locations tested (see Table 18, p. III.H-5). These exceedances are generally located along Washington Street east of the Project Site and at the Jackson Street/Columbus Avenue intersection. The highest wind speeds in the vicinity (18 mph) occurs at the southwest corner of Washington Street and Columbus Avenue. The average wind speed for the test point locations is approximately 10.7 mph.

Twenty of the 21 sidewalk test locations currently do not exceed the wind hazard criterion. One test location (at the northeast corner of Washington Street and Montgomery Street) exceeds the wind hazard criterion (speeds reaching or exceeding the hazard level of 26 mph, as averaged for a single full hour of the year) under existing conditions (see Table 19, p. III.H-6). Total duration of the existing exceedance is five hours per year.

Project Effects

The Project would generally not affect overall wind conditions at the Project Site and vicinity. The existing conditions in the project vicinity are moderately windy; the average wind speed for the 21 test location locations was approximately 10.7 mph. Table 18, below, shows the wind velocity under existing conditions, with the Project, and under cumulative conditions (described below), and the percentage of time that wind velocity exceeds the comfort criterion described above. Exceedances of the comfort criterion are shown in boldface. With the

3 Donald J. Ballanti, Certified Consulting Meteorologist, *Wind Tunnel Analysis for the City College of San Francisco Chinatown/North Beach Campus*, San Francisco, prepared for EIP/PBS&J, November 2006. The wind test report is on file at the District’s office at 33 Gough Street and available for public review.
CITY COLLEGE OF SAN FRANCISCO CHINATOWN/NORTH BEACH CAMPUS

FIGURE 27: WIND MEASUREMENT LOCATIONS

SOURCE: Donald Ballanti Certified Consulting Meteorologist, November 2006.
TABLE 18

WIND COMFORT ANALYSIS

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing</th>
<th>Project</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Criterion (mph)</td>
<td>Velocity (mph)</td>
<td>% Time Above Criterion</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>11</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>11</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Average</td>
<td>- 10.7</td>
<td>- 10.7</td>
<td>- 10.5</td>
</tr>
</tbody>
</table>

Source: Donald J. Ballanti, Certified Consulting Meteorologist.

Note: Exceedances are in boldface.

New Project exceedances are underlined.
Project in place, conditions would change little with the average wind speed for all 21 sidewalk test locations remaining at about 10.7 mph. The range of wind speeds with the Project would be similar to existing conditions, with wind speeds in sidewalk pedestrian areas ranging from 8 mph to 15 mph, compared with a range of 8 to 18 mph under existing conditions. The Project would add two new exceedances (at points 5 and 12) of the 11 mph pedestrian use criterion, for a total of seven exceedances.

Overall, the changes in comfort criterion conditions would not be considered significant adverse impacts.

Wind Hazard Criterion

Under existing conditions, one of 21 test locations (the corner of Washington Street and Montgomery Street) exceeds the Planning Code wind hazard criterion (speeds reaching or exceeding the hazard level of 26 mph, as averaged for a single full hour of the year). Total duration of the four existing exceedances is five hours per year (see Table 19).

With the Project, the single exceedance of the wind hazard criterion would be eliminated. There would be no wind hazard exceedances, a reduction of five hours per year. Because the project would eliminate hazardous wind exceedances, the project would have a beneficial effect on hazardous wind conditions and would not result in significant adverse effects on hazardous winds.

TABLE 19

<table>
<thead>
<tr>
<th>Location</th>
<th>Existing</th>
<th>Project</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Donald J. Ballanti, Certified Consulting Meteorologist.

Notes:
1. This table only includes test locations that have hazardous wind occurrences.
2. The frequency of short-term (3-minute averaged) wind observations at 36 mph is equivalent to the frequency of an hourly averaged wind of 26 mph, the wind hazard criterion established in San Francisco Planning Code Section 148.
Cumulative Effects

The analysis of cumulative effects on wind conditions accounts for the development of Lot 5, although there are no current plans for development. Development by the District on Lot 5 would be limited to a height of 84 feet by the 2005 Settlement Agreement for the Columbo Building, between the District and Friends of the Columbo Building. Under the Planning Code, a private developer could only construct a building up to 65 feet. Although the District will likely sell Lot 5, the cumulative wind scenario conservatively included an 84-foot building on Lot 5.

With cumulative conditions, compared to project conditions, wind speed in pedestrian areas would decrease slightly. The average wind speed would decrease from 10.7 to 10.5 mph, and wind speeds in the pedestrian areas would range from 9 mph to 14 mph, compared to a range of 8 to 18 mph under existing conditions. The number of exceedances would be five, less than the seven exceedances under the project scenario, the same as under existing conditions. Under the cumulative scenario, no exceedances of the wind hazard criterion would occur, but would reduce total exceedances from five to zero hours per year.

The cumulative analyses indicate that the Project would eliminate hazardous wind conditions. Therefore, the Project would not contribute to cumulative hazardous wind effects.
I. AIR QUALITY

SETTING

This section evaluates the potential impacts on air quality that would result from implementation of the Project. Specifically, this assessment considers whether the Project would (1) result in a violation of air quality standards; (2) substantially contribute to an existing or projected air quality violation; (3) conflict with or obstruct implementation of the applicable air quality plan; (4) expose sensitive receptors to substantial pollutant concentrations; or (5) result in creation of objectionable odors affecting a substantial number of people.

Background

The City of San Francisco is within the San Francisco Bay Area Air Basin, named so because the surrounding mountains confine the movement of air and the pollutants it contains. This area includes all of Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, the western half of Solano and the southern half of Sonoma counties. The regional climate within the Bay Area is considered semi-arid and is characterized by warm summers, mild winters, infrequent seasonal rainfall, moderate daytime onshore breezes, and moderate humidity. A wide range of emissions sources—such as dense population centers, heavy vehicular traffic, and industry—and meteorology primarily influence the air quality within the Bay Area.

Air pollutant emissions within the Bay Area are generated by stationary, area-wide, and mobile sources. Stationary sources can be divided into two major subcategories: point and area sources. Point source emissions occur at identified locations and are usually associated with manufacturing and industry. Examples are boilers or combustion equipment that produce electricity or generate heat. Area-wide sources consist of many smaller point sources that are widely distributed. Examples of area-wide sources include residential and commercial water heaters, painting operations, lawn mowers, agricultural fields, landfills, and consumer products such as barbeque lighter fluid and hair spray. Mobile sources refer to emissions...
from motor vehicles, including tailpipe and evaporative emissions, and are classified as either on-road or off-road. Off-road sources include aircraft, ships, trains, and self-propelled construction equipment. Air pollutants can also be generated by the natural sources such as when fine dust particles are pulled off the ground surface and suspended in the air during high winds.

Both the federal and state governments have established ambient air quality standards for outdoor concentrations of various pollutants in order to protect public health. The national and state ambient air quality standards have been set at levels where concentrations could be generally harmful to human health and welfare, and to protect the most sensitive persons from illness or discomfort with a margin of safety.

The air pollutants for which national and state standards have been promulgated and which are most relevant to air quality planning and regulation in the Bay Area include ozone, carbon monoxide (CO), respirable particulate matter (PM$_{10}$), fine particulate matter (PM$_{2.5}$), sulfur dioxide (SO$_2$), and lead. In addition, toxic air contaminants are of concern in the Bay Area. Each of these air pollutants is briefly described below.

- **Ozone** is a gas that is formed when reactive organic gases (ROG) and nitrogen oxides (NO$_x$)—both byproducts of internal combustion engine exhaust—undergo slow photochemical reactions in the presence of sunlight. Ozone concentrations are generally highest during the summer months when direct sunlight, light wind, and warm temperature conditions are conducive to its formation.

- **Carbon Monoxide** is a colorless, odorless gas produced by the incomplete combustion of fuels. CO concentrations tend to be the highest in the winter morning when surface-based inversions trap the pollutant at ground levels. Because CO is emitted directly from internal combustion engines—unlike ozone—and motor vehicles operating at slow speeds are the primary source of CO in the Bay Area, the highest ambient CO concentrations are generally found near congested transportation corridors and intersections.

- **Respirable Particulate Matter** (PM$_{10}$) and **Fine Particulate Matter** (PM$_{2.5}$) consist of extremely small, suspended particles or droplets 10 microns and 2.5 microns or smaller in diameter. Most particulate matter in urban areas is produced by fuel combustion, motor vehicle travel, and construction activities.

- **Nitrogen Dioxide** (NO$_2$) is a reactive, oxidizing gas capable of damaging cells lining the respiratory tract and is an essential ingredient in the formation of ozone. It is emitted as a by-product of fuel combustion.
III. Environmental Settings and Impacts
 I. Air Quality

- Sulfur dioxide (SO₂) is a colorless, extremely irritating gas or liquid. It enters the
 atmosphere as a pollutant mainly as a result of burning high sulfur-content fuel oils and
 coal, and from chemical processes occurring at chemical plants and refineries.

- Toxic Air Contaminants (TACs) is a general term for a diverse group of air pollutants
 that can adversely affect human health, but have not had ambient air quality standards
 established for them. They are not fundamentally different from the pollutants
 discussed above, but lack ambient air quality standards for a variety of reasons (e.g.,
 insufficient data on toxicity, association with particular workplace exposures rather
 than general environmental exposure, etc.). The health effects of TACs can result
 from either acute or chronic exposure; many types of cancer are associated with
 chronic TAC exposures.

Regulatory Setting

Air quality within the Bay Area is addressed through the efforts of various federal, state,
regional, and local government agencies. These agencies work jointly, as well as individually,
to improve air quality through legislation, regulations, planning, policy-making, education,
and a variety of programs. The agencies responsible for improving the air quality within the
Bay Area are discussed below.

Federal

The U.S. Environmental Protection Agency (EPA) is responsible for setting and enforcing the
National Ambient Air Quality Standards for atmospheric pollutants. It regulates emission
sources that are under the exclusive authority of the federal government, such as aircraft,
ships, and certain locomotives.

As part of its enforcement responsibilities, the EPA requires each state with federal
nonattainment areas to prepare and submit a State Implementation Plan (SIP) that demonstrates
the means to attain the national standards. The SIP must integrate federal, state, and local
plan components and regulations to identify specific measures to reduce pollution, using a
combination of performance standards and market-based programs within the timeframe
identified in the SIP.
State

The California Air Resources Board (ARB), a part of the California EPA, is responsible for the coordination and administration of both federal and state air pollution control programs within California. In this capacity, the ARB conducts research, sets California Ambient Air Quality Standards, compiles emission inventories, develops suggested control measures, provides oversight of local programs, and prepares the SIP. The ARB establishes emissions standards for motor vehicles sold in California, consumer products (e.g., hairspray, aerosol paints, and barbecue lighter fluid), and various types of commercial equipment. It also sets fuel specifications to further reduce vehicular emissions.

Regional

The Bay Area Air Quality Management District (BAAQMD) is the primary agency responsible for comprehensive air pollution control in the entire San Francisco Bay Area Air Basin, including San Francisco. To that end, the BAAQMD, a regional agency, works directly with the Association of Bay Area Governments, the Metropolitan Transportation Commission and local governments, and cooperates actively with all federal and state government agencies. The BAAQMD develops rules and regulations, establishes permitting requirements for stationary sources, inspects emissions sources, and enforces such measures through educational programs or fines, when necessary.

The BAAQMD is directly responsible for reducing emissions from stationary (area and point) sources and for assuring that state controls on mobile sources are effectively implemented. The BAAQMD has responded to this requirement by preparing Ozone Attainment Plans and Clean Air Plans that comply with the federal Clean Air Act and the California Clean Air Act to accommodate growth, reduce the pollutant levels in the Bay Area, meet federal and state ambient air quality standards, and minimize the fiscal impact that pollution control measures have on the local economy. The Ozone Attainment Plans are prepared for the federal ozone standard; the Clean Air Plans are prepared for the state ozone standards. The most recent Ozone Attainment Plan was adopted by the BAAQMD Board of Directors in October 2001 and demonstrates attainment of the federal ozone standard in the Bay Area by 2006. The
The current regional Clean Air Plan was adopted by the Board of Directors in December 2000. It identifies the control measures that would be implemented through 2006 to reduce major sources of pollutants. These planning efforts have substantially decreased the population’s exposure to unhealthful levels of pollutants, even while substantial population growth has occurred within the Bay Area. The Clean Air Plan predicts that regional ozone concentrations will decrease by 1.2 percent per year or 9.0 percent over the twelve years after it was adopted.

In 2003 the California Legislature enacted Senate Bill 656 (SB 656) to reduce public exposure to PM_{10} and PM_{2.5}. SB 656 requires ARB, in consultation with local air districts, to develop and adopt by January 1, 2005 a list of the most readily available, feasible, and cost-effective control measures that could be used by ARB and the air districts to reduce PM_{10} and PM_{2.5}. In November 2005, the BAAQMD adopted a Particulate Matter Implementation Strategy focusing on those measures most applicable and cost effective for the Bay Area.

Although the BAAQMD is responsible for regional air quality planning efforts, it does not have the authority to directly regulate the air quality issues associated with plans and new development projects within the Bay Area. Instead, the BAAQMD has used its expertise and prepared the BAAQMD CEQA Guidelines to indirectly address these issues in accordance with the projections and programs of the Ozone Attainment Plan and Clean Air Plan. The purpose of the BAAQMD CEQA Guidelines is to assist Lead Agencies, as well as consultants, Project proponents, and other interested parties, in evaluating potential air quality impacts of projects and plans proposed in the Bay Area. Specifically, the BAAQMD CEQA Guidelines explain the procedures that the BAAQMD recommends be followed during environmental review processes required by CEQA. The BAAQMD CEQA Guidelines provide direction on how to evaluate potential air quality impacts, how to determine whether these impacts are significant, and how to mitigate these impacts. The BAAQMD intends that by providing this guidance, the air quality impacts of plans and development proposals will be analyzed accurately and consistently throughout the Bay Area, and adverse impacts will be minimized.
Local

Local jurisdictions, such as the City of San Francisco, have the authority and responsibility to reduce air pollution through their policy power and decision-making authority. Specifically, each city is responsible for assessing the potential for and mitigating air quality problems that result from its land use decisions. The San Francisco General Plan Air Quality Element includes the following objectives:

- Objective 2: Reduce mobile sources of air pollution through implementation of the Transportation Element of the General Plan.
- Objective 3: Decrease the air quality impacts of development by coordination of land use and transportation decisions.
- Objective 5: Minimize particulate matter emissions from road and construction sites.
- Objective 6: Link the positive effects of energy conservation and waste management to emission reductions.

The District utilizes the BAAQMD CEQA Guidelines as its guidance document for the environmental review of its plans and developments.

Existing Air Quality Conditions

Regional Air Quality

The emissions inventory for the entire Bay Area and San Francisco is summarized in Table 20. In the Bay Area, motor vehicles generate the majority of ROG, NOx, and CO; stationary sources generate the most SOx, and area-wide sources generate the most airborne particulates.

Measurements of ambient concentrations of the criteria pollutants are used by the EPA and the ARB to assess and classify the air quality of each regional air basin, county, or, in some cases, a specific urbanized area. The classification is determined by comparing actual monitoring data with national and state standards. If a pollutant concentration in an area is lower than the standard, the area is classified as being in “attainment” for that pollutant. If the pollutant concentration exceeds the standard, the area is classified as a “nonattainment” area. If there
are not enough data available to determine whether the standard is exceeded in an area, the area is designated “unclassified.”

TABLE 20

<table>
<thead>
<tr>
<th>Emissions Source</th>
<th>ROG</th>
<th>NO\textsubscript{x}</th>
<th>CO</th>
<th>SO\textsubscript{x}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco Bay Area Air Basin</td>
<td>387</td>
<td>547</td>
<td>2213</td>
<td>54</td>
<td>214</td>
<td>91</td>
</tr>
<tr>
<td>San Francisco</td>
<td>37</td>
<td>67</td>
<td>206</td>
<td>7</td>
<td>17</td>
<td>9</td>
</tr>
</tbody>
</table>

The EPA and the ARB use different standards for determining whether the Bay Area is an attainment area. Under national standards, the Bay Area is currently classified as a nonattainment area for ozone. However, 2004 marked the fourth consecutive year that ambient ozone concentrations throughout the Bay Area did not exceed national standards. This condition does not constitute a formal redesignation of the Bay Area into the attainment category. The next step is for the ARB to submit to the EPA a plan demonstrating how the area will continue to maintain the national standard for 10 years. Once the plan is submitted, the ARB can request the EPA to redesignate the Bay Area as an attainment area for ozone. The Bay Area is in attainment or designated as unclassified for all other pollutants under national standards.

Under state standards, the Bay Area is designated as a nonattainment area for ozone and PM\textsubscript{10}, and an attainment area for all other pollutants.

Local Air Quality

The emission sources that currently exist in the Project area are traffic-related; most notable is the traffic along Washington Street and Kearny Street. Emissions due to traffic congestion dominate the localized air quality in the vicinity of the Project area. Existing land uses surrounding the Project vicinity constitute minor sources of air emissions (e.g., water heaters, ventilation equipment, etc.) from office, residential, and commercial activity.
Land uses in the vicinity of the Project Site include office, residential, commercial, institutional, and other uses. Motor vehicles are the primary source of pollutants in the downtown area. Traffic-congested roadways and intersections have the potential to generate localized high levels of CO. Localized areas where ambient concentrations exceed national and/or state standards for CO are termed CO “hotspots.” These hotspots can become a problem if people are exposed to the high concentrations for long periods of time (i.e., one hour or more when compared to the national and state one-hour standards and eight hours or more when compared with the national and state eight-hour standards). The national one-hour standard is 35.0 parts per million (ppm), and the state one-hour standard is 20.0 ppm. The eight-hour national and state standards are 9.0 ppm and 9.0 ppm, respectively.

Existing Site Emissions

The Project Site currently consists of a surface parking lot. Emissions on the site are solely from vehicles entering and exiting the site.

Sensitive Receptors

Land uses such as schools, children’s day care centers, hospitals, and convalescent homes are considered to be more sensitive than the general public to poor air quality because the population groups associated with these uses have increased susceptibility to respiratory distress. Persons engaged in strenuous work or exercise also have increased sensitivity to poor air quality. Residential areas are considered more sensitive to air quality conditions than commercial and industrial areas, because people generally spend longer periods of time at their residences, resulting in greater exposure to ambient air quality conditions. Recreational uses are also considered sensitive, due to the greater exposure to ambient air quality conditions, and because the presence of pollution detracts from the recreational experience.

In general, retail, residential, hotel, office, institutional uses, and parking lots predominate the Project vicinity on Kearny Street and Washington Street. Portsmouth Square, a park frequented by children and the elderly, is located across Kearny Street from the Project Site; the St. Mary’s School to be constructed adjacent to the Project Site; and the International
Hotel Senior Housing building (I-Hotel building) is located on the northwest corner of the Project block.

IMPACTS

Significance Criteria

The BAAQMD CEQA Guidelines identifies significance criteria to assist lead agencies in evaluating potential air quality impacts of projects. The District uses these criteria when evaluating development projects and plans. The Project may result in significant air quality impacts if it results in any of the following effects:

- Conflict with or obstruct implementation of the applicable air quality plan;
- Violate any air quality standard or contribute substantially to an existing or projected air quality violation;
- Result in a cumulatively considerable net increase of any criteria pollutant for which the Project region is nonattainment under an applicable federal or state ambient air quality standard;
- Expose sensitive receptors to substantial pollutant concentrations; or
- Create objectionable odors affecting a substantial number of people.

Project Effects

Construction Effects

Construction of the Project would be expected to occur over several phases. Construction activities within each phase of development would be expected to generate air pollutant emissions. First, the minor demolition activities associated with removal of existing surface features (demolition at the Project Site would be minimal because there are no existing buildings). Following demolition, the Project Site would be excavated and graded to accommodate the new buildings and surface improvements. The new buildings would then be constructed and readied for use.

During Project construction, air quality could potentially be affected. Heavy-duty construction equipment would emit NOx, carbon monoxide (CO), sulfur dioxide (SO2), hydrocarbons (HC),
and PM$_{10}$ as a result of diesel fuel combustion. Fugitive dust (measured as PM$_{10}$) would also be generated from construction activities such as excavation or soil movement. Dust and equipment exhaust generated by construction activities can pose a nuisance to the people at Portsmouth Square, nearby residential areas, and, potentially, the future occupants at the adjacent school.

Construction emissions during demolition, foundation excavation, and site grading could cause adverse effects on local air quality by adding wind-blown dust to the particulate matter in the atmosphere while soil is exposed. The BAAQMD, in evaluating air quality effects under CEQA has developed an analytic approach that obviates the need to quantify these emissions. Instead, the BAAQMD has identified a set of feasible PM$_{10}$ control measures for construction activities on sites less than 4 acres. The Project Site is approximately 0.3 acres. Implementation of the dust control measures delineated in Mitigation Measure AQ-1, p. III.I-13, would reduce the effects of fugitive dust during construction activities to a less-than-significant level.

Construction emissions would also include diesel emissions from heavy-duty construction equipment, which could result in significant diesel particulate matter and ozone precursor emissions. The BAAQMD recommends implementation of measures to reduce combustion emissions from construction equipment, particularly diesel emissions. Implementation of Mitigation Measure AQ-2, p. III.I-13, would reduce diesel emissions during construction to a less-than-significant level.

Construction activities could also generate airborne odors associated with the operation of construction vehicles (i.e., diesel exhaust) and the application of architectural coatings. However, diesel exhaust emissions can be minimized by implementing Mitigation Measure AQ-2. In addition, the application and use of architectural coating is regulated by BAAQMD.\footnote{BAAQMD, Regulation 8, Organic Compounds, Rule 3, Architectural Coatings, BAAQMD Regulations, Adopted March 1, 1978.} As such, implementation of the recommended construction equipment exhaust mitigation measures and compliance with BAAQMD’s regulations regarding architectural coating would reduce these impacts to a less-than-significant level.
Mitigation Measure AQ-1 and AQ-2, provided below, under Mitigation Measures, would minimize construction impacts associated with fugitive dust and equipment exhaust to a less-than-significant level.

Operational Effects-Mobile Sources

When completed, the Project would house educational uses that are estimated to generate about 16,140 daily person-trips. The daily emissions of air pollutants would increase due to the increased number of motor vehicles used by employees, faculty, and students to the project. However, based on the conditions presented in Section III.D, Transportation, the primary mode of transportation to the Project Site would be transit and pedestrian trips. The Project would generate about 1,184 daily vehicle-trips (461 faculty members, 130 employees, and 593 students). The BAAQMD has developed in their *BAAQMD CEQA Guidelines* screening criteria for projects requiring detailed analysis for potential air quality impacts. The BAAQMD screening threshold for projects is 2,000 vehicle trips. Because the Project would not be expected to generate more than 2,000 vehicle trips per day, the Project would not result in a significant air quality impact.

The BAAQMD recommends analysis for study intersections that operate at Level of Service (LOS) D, LOS E, or LOS F (these intersections have greater congestion and, therefore, higher localized concentrations of CO). The study intersections (Washington Street/Montgomery Street/Columbus Avenue intersection, Kearny Street/Washington Street intersection, Kearny Street/Jackson Street intersection, and Jackson Street/Columbus Avenue intersection) would all operate at LOS A or LOS B under existing and future conditions. Because intersection congestion levels at the study intersections would be below the thresholds identified by the BAAQMD, existing and future CO concentrations near these intersections would not be expected exceed the national 35.0 ppm and state 20.0 ppm one-hour ambient air quality standards or the national 9.0 ppm and state 9.0 ppm eight-hour ambient air quality standards when the Project is fully operational. Therefore, sensitive receptors located close to these intersections would not be exposed to substantial pollutant concentrations, and the potential impacts of the Project would be less than significant.
Cumulative Effects

The BAAQMD neither recommends quantified analyses of cumulative construction emissions nor provides thresholds of significance that could be used to assess cumulative construction impacts. It is recognized that the construction industry is an existing source of emissions within the Bay Area. Construction equipment operates at one site for a relatively short-term basis and, when finished, then moves on to a new construction site. The same situation occurs for the construction employees who make a living going from one site to another doing similar construction work. Because (1) construction activities would be temporary, (2) the contribution to the cumulative context is so small as to be virtually immeasurable, and (3) all of the appropriate and feasible construction-related measures recommended by the BAAQMD would be implemented in accordance with standard practice, the contribution of construction emissions associated with the Project would not be cumulatively considerable.

With regard to operational emissions, the BAAQMD recommends several methodologies to determine the cumulative impacts of individual projects. For any project – such as this Project – that does not have significant operational air quality impacts, the determination of significant cumulative impact should be based on an evaluation of the consistency of the Project with the local general plan and of the general plan with the current Clean Air Plan.

The San Francisco General Plan includes an 1997 Air Quality Element, updated in 2000. This element is consistent with the 2000 Clean Air Plan. The Project would be in an area of San Francisco zoned for mixed-use development, consistent with the land use designations for the site in the San Francisco General Plan. As discussed previously in this section, the fugitive dust control measures that would be implemented during Project construction are consistent with Objective 3 of the San Francisco General Plan Air Quality Element update. In addition, no significant PM$_{10}$ sources would be associated with the Project beyond construction. For these reasons, the operational characteristics of the Project would not cause a cumulatively considerable increase in regional air pollutants.

2 BAAQMD, Bay Area 2000 Clean Air Plan and Triennial Assessment, Adopted by BAAQMD Board of Directors December 20, 2000.
As discussed above, the study intersections in the future, including cumulative development plus the Project, would result in intersection operation levels of LOS A or LOS B. Localized concentrations of CO would change as a result of cumulative growth in the Project vicinity. However, because intersection congestion levels at the study intersections would be below the thresholds identified by the BAAQMD, future CO concentrations near these intersections would not be expected to exceed the national 35.0 ppm and state 20.0 ppm one-hour ambient air quality standards or the national 9.0 ppm and state 9.0 ppm eight-hour ambient air quality standards. Therefore, sensitive receptors located in proximity to these intersections would not be exposed to substantial pollutant concentrations, and the impact of cumulative development would not be significant.

MITIGATION MEASURES

Mitigation Measure AQ-1: Dust Control. The District would require the contractor(s) to implement the following mitigation measures during Project construction, in accordance with the BAAQMD and District standard mitigation requirements:

- If necessary, water all active construction areas at least twice daily (with recycled water).
- Cover all trucks hauling soil, sand, and other loose materials.
- Apply non-potable water two times daily to all unpaved access roads, parking areas, and staging areas at construction sites.
- Sweep daily all paved access roads, parking areas, and staging areas at construction sites.
- Sweep streets daily if visible soil material is carried onto adjacent public streets.

Mitigation Measure AQ-2: Efficient Operation of Construction Equipment. The District would require the Project contractor(s) to maintain and operate construction equipment, and to use bio-diesel fuels to the maximum extent feasible, so as to minimize exhaust emissions of particulates and other pollutants through the prohibition of idling motors when equipment is not in use or when trucks are waiting in queues, and implementation of specific maintenance programs to reduce emissions for equipment that would be in frequent use for much of the construction period.
J. NOISE

SETTING

This section evaluates the potential for noise and vibration impacts resulting from implementation of the Project. Specifically, this assessment considers whether the Project would cause a substantial temporary and/or permanent increase in ambient noise levels in the vicinity of the Project Site; exposure of residents or businesses to excessive noise levels or ground-borne vibration; and whether this exposure would be in excess of standards established in the City of San Francisco General Plan and Noise Ordinance, or any other applicable standards.

Characteristics of Sound, Noise and Vibration

Sound is created when vibrating objects produce pressure variations that move rapidly outward into the surrounding air. The main characteristics of these air pressure waves are amplitude, which we experience as a sound’s “loudness,” and frequency, which we experience as a sound’s “pitch.” The standard unit of sound amplitude is the decibel (dB); it is a measure of the physical magnitude of the pressure variations relative to the human threshold of perception. The human ear’s sensitivity to sound amplitude is frequency-dependent; it is more sensitive to sound with a frequency at or near 1,000 cycles per second than to sound with much lower or higher frequencies.

Most “real world” sounds (e.g., a dog barking, a car passing, etc.) are complex mixtures of many different frequency components. When the average amplitude of such sounds is measured with a sound level meter, it is common for the instrument to apply different adjustment factors to each of the measured sound’s frequency components. These factors account for the differences in perceived loudness of each of the sound’s frequency components relative to those that the human ear is most sensitive to (i.e., those at or near 1,000 cycles per second). This practice is called “A-weighting.” The unit of A-weighted sound amplitude is also the decibel. In reporting measurements to which A-weighting has been applied, an “A” is
appended to dB (i.e., dBA) to make this clear. Table 21 lists the A-weighted average sound levels commonly encountered in various environmental situations.

<table>
<thead>
<tr>
<th>Common Outdoor Activities</th>
<th>Noise Level (dBA)</th>
<th>Common Indoor Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Fly-over at 100 feet</td>
<td>—110—</td>
<td>Rock Band</td>
</tr>
<tr>
<td>Gas Lawnmower at 3 feet</td>
<td>—100—</td>
<td></td>
</tr>
<tr>
<td>Diesel Truck going 50 mph at 50 feet</td>
<td>—80—</td>
<td>Food Blender at 3 feet</td>
</tr>
<tr>
<td>Noisy Urban Area during Daytime</td>
<td></td>
<td>Garbage Disposal at 3 feet</td>
</tr>
<tr>
<td>Gas Lawnmower at 100 feet</td>
<td>—70—</td>
<td>Vacuum Cleaner at 10 feet</td>
</tr>
<tr>
<td>Commercial Area</td>
<td></td>
<td>Normal Speech at 3 feet</td>
</tr>
<tr>
<td>Heavy Traffic at 300 feet</td>
<td>—60—</td>
<td>Large Business Office</td>
</tr>
<tr>
<td>Quiet Urban Area during Daytime</td>
<td>—50—</td>
<td>Dishwasher in Next Room</td>
</tr>
<tr>
<td>Quiet Urban Area during Nighttime</td>
<td>—40—</td>
<td>Theater, Large Conference Room</td>
</tr>
<tr>
<td>Quiet Suburban Area during Nighttime</td>
<td>—30—</td>
<td>Library</td>
</tr>
<tr>
<td>Quiet Rural Area during Nighttime</td>
<td>—20—</td>
<td>Bedroom at Night, Concert Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(background)</td>
</tr>
<tr>
<td></td>
<td>0—</td>
<td>Broadcast/Recording Studio</td>
</tr>
</tbody>
</table>

Noise is the term generally given to the “unwanted” aspects of intrusive sound. Many factors influence how a sound is perceived and whether or not it is considered annoying to a listener. These include not only the physical characteristics of a sound, but also non-acoustic factors that influence the judgment of listeners regarding the “unwantedness” of a sound, the most important of which are presented in Table 22. Excessive noise can negatively affect the physiological or psychological well-being of individuals or communities.

All quantitative descriptors used to measure environmental noise exposure recognize the strong correlation between the high acoustical energy content of a sound (i.e., its loudness and duration) and the disruptive effect it is likely to have as noise. Because environmental noise fluctuates over time, most such descriptors average the sound level over the time of exposure, and some add “penalties” during the times of day when intrusive sounds would be more disruptive to listeners.

TABLE 22

FACTORS THAT AFFECT INDIVIDUAL JUDGMENT OF A SOUND’S “NOISINESS”

<table>
<thead>
<tr>
<th>Primary Acoustic Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level</td>
</tr>
<tr>
<td>Sound Frequency</td>
</tr>
<tr>
<td>Sound Duration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Acoustic Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Characteristics of the Sound</td>
</tr>
<tr>
<td>Fluctuations in Sound Level</td>
</tr>
<tr>
<td>Fluctuations in Sound Frequency</td>
</tr>
<tr>
<td>Rise-Time of the Sound (e.g., Is it “fast” like an automobile horn, or “slow” like an approaching train?)</td>
</tr>
<tr>
<td>Localization of Sound Source (Is it obvious where the sound is coming from, or not?)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Acoustic Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiology of the Listener (Is the listener’s hearing ability acute, or not?)</td>
</tr>
<tr>
<td>Listener’s Adaptation from Past Experience (e.g., How long has the listener lived near the airport?)</td>
</tr>
<tr>
<td>Listener’s Activity During Exposure (Was the listener sleeping, working, etc.?)</td>
</tr>
<tr>
<td>Predictability of When the Sound Will Occur (e.g., Is it an expected noon-time whistle or a random car horn)</td>
</tr>
<tr>
<td>Listener’s Judgment of Personal Benefit from Activity Producing the Sound (e.g., Has the repair work being done on a street been long requested by local residents?)</td>
</tr>
</tbody>
</table>

*Source: Adapted from *Handbook of Noise Control*, Cyril M. Harris, 1979.*
Commonly used noise exposure descriptors include:

- **L_{eq}**, the **equivalent energy noise level**, is the constant noise level that would deliver the same acoustic energy to the ear as the actual time-varying noise over the same exposure time. L_{eq} would be the same regardless of the time of day during which the noise occurs.

- **L_{dn}**, the **day-night average noise level**, is a 24-hour average L_{eq} with a 10 dBA “penalty” added to noise during the hours of 10:00 p.m. to 7:00 a.m. to account for increased nighttime noise sensitivity. Because of this penalty, the L_{dn} would always be higher than its corresponding 24-hour L_{eq} (e.g., a constant 60 dBA noise over 24 hours would have a 60 dBA L_{eq}, but a 66.4 dBA L_{dn}).

- **CNEL**, the **community noise equivalent level**, is an L_{dn} with an additional 5 dBA “penalty” for the evening hours between 7:00 p.m. and 10:00 p.m.

Community noise exposures are most often represented by 24-hour descriptors, such as L_{dn} or CNEL. One-hour and shorter-period descriptors are useful for characterizing noise caused by short-term activities, such as the operation of construction equipment. Community noise environments are generally perceived as “quiet” when the L_{dn}/CNEL is below 45 dBA, “moderate” in the 45 to 60 dBA range, and “loud” above 60 dBA. Very noisy urban residential areas are usually around 70 dBA L_{dn}/CNEL. Along major roadways, noise levels are typically between 65 and 75 dBA L_{dn}/CNEL. Any noise intrusions that cause short-term interior levels to rise above 45 dBA at night can disrupt sleep. Exposures to noise levels greater than 85 dBA for eight-hours or longer can cause permanent hearing damage.

Vibrating objects in contact with the ground radiate energy through that medium; if a vibrating object is massive enough and/or close enough to the observer, its vibrations are perceptible. The rumbling sound caused by the vibration of room surfaces is called ground-borne noise. The ground motion caused by vibration is measured as particle velocity in inches per second and in the U.S. is referenced as vibration decibels (VdB).

The general human response to different levels of groundborne vibration levels is described in Table 23. Most perceptible indoor vibration is caused by sources within buildings such as the operation of mechanical equipment, movement of people, or the slamming of doors. Typical outdoor sources of perceptible groundborne vibration are construction equipment, steel-
wheeled trains, and traffic on rough roads. If a roadway is smooth, the groundborne vibration from traffic is rarely perceptible. The range of interest is from approximately 50 VdB, which is the typical background vibration velocity level, to 100 VdB, which is the general threshold where minor damage can occur in fragile buildings.

<table>
<thead>
<tr>
<th>Vibration Velocity Level</th>
<th>Human Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 VdB</td>
<td>Approximate threshold of perception for many people.</td>
</tr>
<tr>
<td>75 VdB</td>
<td>Approximate dividing line between barely perceptible and distinctly perceptible. Many people find that transportation-related vibration at this level is unacceptable.</td>
</tr>
<tr>
<td>85 VdB</td>
<td>Vibration acceptable only if there are an infrequent number of events per day.</td>
</tr>
</tbody>
</table>

Plans and Regulations

City College Master Plan

The *City College Master Plan*\(^1\) includes plans for a new Chinatown/North Beach Campus bordering the Chinatown, North Beach, and Financial Districts. Under Sustainable Planning and Design, the *Master Plan* includes Sustainable Planning Principles, including “Protecting Health and Well-being of Campus/Surrounding Community.” Under this principle of the *Master Plan*, the District would work to reduce construction-related noise pollution.

City and County of San Francisco

The *San Francisco General Plan* includes Land Use Compatibility Guidelines that suggest satisfactory noise levels for various land uses, and are based on compatibility guidelines from the California Department of Health, Office of Noise Control. The *General Plan* indicates that the maximum exterior noise level considered satisfactory for residential and transient

\(^1\) *City College of San Francisco Master Plan*, adopted 2004.
lodging is 60 dBA CNEL; 65 dBA CNEL for schools, libraries, churches, hospitals, day care centers, and nursing homes; and 70 dBA for office and commercial uses, and parks.

The San Francisco Noise Ordinance regulates both construction noise and fixed source noise within the City. While unnecessary, excessive, or offensive noise limits are imposed to protect all people in an area, nuisance noise is generally limited by the Noise Ordinance to within 5 dBA of ambient noise levels. Article 29 of the San Francisco Police Code regulates fixed and mobile noise sources; Sections 2907 and 2908 of the Code regulate noise from construction equipment to 80 dBA Leq at a distance of 100 feet from such equipment during the hours from 7:00 a.m to 8:00 p.m. Construction activities during the nighttime period from 8:00 p.m. to 7:00 a.m. may not exceed the ambient level by 5 dBA at the nearest property line, unless a special permit is granted prior to such work. Section 2909, Fixed Source Levels, regulates mechanical equipment noise.

Existing Ambient Noise Levels

The existing noise environment in the Project area is typical of noise levels in urban San Francisco. The primary sources of noise in the Project area are traffic-related; most notable are the heavy volumes of traffic along Kearny Street and Washington Street. Existing land uses surrounding the Project vicinity constitute minor sources of noise (e.g., ventilation equipment, etc.) from residential, office, and commercial activity.

The Project Site consists of a surface parking lot. Existing noise from the Project Site is from cars entering and exiting the site.

In general, retail, residential, hotel, office, institutional uses, and parking lots predominate the Project vicinity on Kearny Street and Washington Street. Portsmouth Square, a park frequented by children and the elderly, is located across Kearny Street from the Project Site; the St. Mary’s Schools will be constructed north of the Project Site; and the International Hotel Senior Housing building (I-Hotel building) is on the northwest corner of the Project block.
IMPACTS

Significance Criteria

The CEQA Guidelines state that a noise impact would normally be considered significant if noise levels generated by the Project would conflict with local goals and plans, or if noise level increases would be significant. For the purposes of this EIR, a noise or vibration impact would be considered significant if:

- Exposure of persons to or generation of noise levels in excess of standards established in any applicable plan or noise ordinance, or applicable standards of other agencies;
- Exposure of persons to or generation of excessive ground-borne vibration or ground-borne noise levels;
- A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project;
- A substantial temporary or periodic increase in ambient noise levels in the project above levels existing without the project;
- Exposure of people residing or working in the project area to excessive noise levels if the project is located within an area covered by an airport land use plan, or where such plan has not been adopted, within two miles of a public airport or public use airport; or
- Exposure of people residing or working in the project area to excessive noise levels if the project is located in the vicinity of a private airstrip.

The following analysis addresses potential impacts related to construction noise, on-site noise exposure, and increases in off-site ambient noise levels. The Project Site is not within an airport land use plan area or near a private airstrip.

Project Effects

Construction Noise Effects

Construction of the Project would potentially cause disturbance to nearby residents, businesses, and occupants of Portsmouth Square. Project construction would require the use of heavy equipment for demolition, site grading and excavation, paving, and building fabrication. Construction activities would also involve the use of smaller power tools, generators, mechanical equipment, and other noise sources. During each construction stage,
there would be a different mix of equipment operating and noise levels would vary based on
the amount of equipment in operation and the location of the building demolition or
construction activity.

The U.S. Environmental Protection Agency (EPA) has compiled data regarding the noise
generating characteristics of specific types of construction equipment and typical construction
activities. It indicates that noise levels generated by heavy equipment can range from
approximately 68 dBA Leq to noise levels in excess of 95 dBA Leq when measured at 50 feet.²
However, these noise levels would diminish rapidly with distance from the construction site at
a rate of approximately 6 dBA per doubling of distance. For example, a noise level of 84 dBA
measured at 50 feet from the noise source to the receptor would reduce to 78 dBA at 100 feet
from the noise source to the receptor, and reduce by another 6 dBA to 72 dBA at 200 feet
from the noise source to the receptor.

Construction activities at the Project Site would be mostly limited to the daytime hours. The
use of trucks and tractors at the Project Site would be used during most construction activities
associated with the Project and would result in noise levels of about 95 dBA Leq at 50 feet, or
about 89 dBA Leq at 100 feet. Without mitigation, noise levels during construction could
exceed the San Francisco Police Code regulations for noise from construction equipment of 80
dBA Leq at a distance of 100 feet; therefore, this is considered potentially significant.

However, implementation of Mitigation Measure J-1, p. III.J-12, would result in less-than-
significant impacts from construction of the Project.

Construction Vibration Effects

Operation of construction equipment would also have the potential to generate low levels of
groundborne vibration. The Federal Transit Administration (FTA) has identified various
vibration velocity levels for the types of construction equipment that would operate at the
Project Site during construction. Vibration levels from construction of the Project would

² 95 dBA (50 feet) – 6 dBA (double distance to 100 feet) = 89 dBA
result in vibration levels of about 80 to 81 VdB at 50 feet from the Project Site from operation of trucks and tractors. The closest vibration sensitive receptors would be residents on adjacent properties to the Project Site. As the closest residents would be closer than 50 feet, construction of the Project would exceed 80 VdB at that distance. In general, ground vibrations from these construction activities would very rarely reach the levels that can damage structures, but they can achieve the audible range and be felt in buildings very close to the site. This would be a potentially significant impact regarding the exposure of persons to or generation of excessive ground-borne vibration or ground-borne noise levels.

Implementation of Mitigation Measure J-2, p. III.J-12 to III.J-13, would reduce vibration impacts to less than significant.

Operational Effects

The existing noise environment in the Project vicinity is primarily dominated by traffic noise. The Project would generate approximately 30 new vehicle trips during the PM peak hour.\(^3\) The traffic increase due to the Project could result in an increase in traffic noise levels in the Project vicinity; however, as shown in Section III.D, Transportation, this increase in traffic volumes would not be significant when compared to existing traffic levels. Noise level increases associated with Project traffic would therefore not cause a substantial increase in traffic noise levels at nearby sensitive receptors. Therefore, the Project would not have a significant adverse effect on noise conditions affecting surrounding residential uses, the future St. Mary’s School, or open space uses, such as Portsmouth Square.

The Project would also introduce noise associated with the occupancy and operation of the Project. Operation noise at the Project Site would primarily be associated with noise from ventilators and other mechanical equipment. The mechanical equipment would be placed on the roof of the new building and would have the potential to be in operation during daytime and nighttime hours. Depending on the equipment to be used in the Project, HVAC systems can result in noise levels that average between 50 and 65 dBA L_{eq} at 50 feet from the equipment. *San Francisco Police Code* Section 2909 regulates noise levels for stationary

\(^3\) CHS Consulting Group, CCSF Chinatown/North Beach Campus Transportation Study, March 21, 2007.
equipment within the City. Based on the regulations in this Section, noise levels from stationary equipment at the Project Site would be significant if noise levels exceed 60 dBA at the property line. Noise levels from stationary equipment for the Project could exceed 60 dBA at the property line depending on the size of the equipment to be installed, placement of the equipment, and level of shielding. Therefore, this impact would be potentially significant.

Implementation of Mitigation Measure J-3, p. III.J-13, would reduce this impact to less than significant.

Cumulative Effects

The construction periods of other development projects in the vicinity of the Project may overlap with that of the Project. This EIR thus conservatively assumes that construction of the Project and other foreseeable development would occur simultaneously. The nearest foreseeable development is the St. Mary’s School north of the Project Site.

Assuming concurrent construction, noise from nearby construction of other approved and foreseeable projects would be added to noise from construction of the Project. As discussed above, noise from construction associated with the Project could result in noise levels of 95 dBA without mitigation. This would also be true for the combined construction noise levels from both projects. However, construction activities from both projects are expected to occur during the hours permitted under the San Francisco Municipal Code, and the Project would implement Mitigation Measure J-1, which would reduce the Project’s contribution to the cumulative noise environment. Consequently, concurrent construction activity of the Project would not have a cumulatively considerable noise impact.

Due to the localized nature of vibration impacts, cumulative groundborne vibration impacts would be limited to only projects within the immediate vicinity of the Project Site. However, groundborne vibration at each of the construction sites in the Project vicinity would continue to be isolated within close proximity to the individual pieces of construction equipment. Groundborne vibration associated with construction of the Project would be minimized through implementation of Mitigation Measure J-2 to a less-than-significant level, and as such, the vibration impact of the Project would not be cumulatively considerable.
Noise from operation of the Project would also have the potential to cumulate with other foreseeable developments in the City. Traffic from the Project and other foreseeable developments would be added to the surrounding roadway network and result in increases in the traffic noise levels along these roadways. As noted above, the Project would result in the generation of about 30 new vehicle trips in the PM peak hour. This increase would not be significant compared to existing traffic levels. Therefore, the Project’s contribution to traffic noise levels under cumulative conditions would be less than cumulatively considerable.

Operational noise levels associated with the Project buildings’ occupancy and operation would be limited to the immediate vicinity of the Project. The closest foreseeable project in the vicinity of the Site would be the St. Mary’s School. The St. Mary’s School would also be expected to include operation of ventilation units and other mechanical equipment. The St. Mary’s School and other foreseeable developments within the Project vicinity would be required to comply with the *San Francisco Noise Ordinance, San Francisco Police Code* Section 2909, Fixed Source Levels, which regulates mechanical equipment noise. The Project would implement Mitigation Measure J-3 that would require shielding for mechanical equipment. Compliance with the Noise Ordinance section would ensure that the mechanical equipment noise associated with foreseeable projects would not substantially increase the ambient noise level of the surrounding area, and implementation of Mitigation Measure J-3 would ensure the Project’s mechanical equipment noise would not substantially increase the ambient noise levels. Therefore, there would not be a significant cumulative impact due to operation.

As noted above, the existing noise environment in the Project vicinity is dominated by traffic noise, the typical noise environment of an urban area. Typical noise levels for an urban residential or semi-commercial areas range from about 55 to 60 dBA and commercial locations are typically around 60 dBA; for a noisy urban environment noise levels range from about 65 dBA to 80 dBA. The land use compatibility chart in the *San Francisco General Plan* indicates that noise levels up to 65 dBA would be considered acceptable for new school uses without any special insulation. Noise levels up to 70 dBA would be considered acceptable only with inclusion of any necessary noise insulation features. The *General Plan* does not provide
guidelines for interior noise levels within classrooms. However, the U.S. Environmental Protection Agency (EPA) indicates that an average interior noise level of 45 dBA is recommended for educational facilities to avoid speech interference. Improvement Measure J-1 is recommended to ensure noise levels within the classrooms would be below the EPA’s recommended interior noise level.

MITIGATION MEASURES

The following measures shall be undertaken to reduce potentially significant noise and vibration impacts. Mitigation Measures J-1 and J-2 are based on measures identified in the City College Master Plan EIR.

Mitigation Measure J-1: Construction Noise.

(a) To the extent feasible, the District shall limit construction activity to the hours of 7:00 a.m. to 6:00 p.m. on weekdays, and 7:00 a.m. to 5:00 p.m. on Saturdays and Sundays. If nighttime construction is required, District shall apply for, and abide by the terms of, a permit from the San Francisco Department of Public Works. The District shall require contractors to comply with the City Noise Ordinance.

(b) Construction contractors shall implement appropriate additional noise reduction measures that include using noise-reducing mufflers and other noise abatement devices, changing the location of stationary construction equipment, shutting off idling equipment, and notifying adjacent residences and businesses in advance of construction work. In addition, the District shall require the posting of signs prior to construction activities with a phone number for residents to call with noise complaints.

Mitigation Measure J-2: Construction Vibration.

(a) The District shall provide notification to the closest receptors, at least ten days in advance, of construction activities that could cause vibration levels above the threshold.

(b) The District shall require construction contractors to conduct demolition, earthmoving, and ground-impacting operations so as not to occur in the same time period.

III. Environmental Settings and Impacts
J. Noise

(c) The District shall require construction contractors to, where possible, select demolition methods to minimize vibration (e.g., sawing masonry into sections rather than demolishing it by pavement breakers).

(d) The District shall require construction contractors to operate earthmoving equipment on the construction site as far away from vibration sensitive sites as possible.

(e) The construction contractor shall implement methods to reduce vibration, including, but not limited to, sound attenuation barriers, cutoff trenches and the use of smaller hammers.

Mitigation Measure J-3: Mechanical Equipment. The District shall provide shielding to minimize noise from stationary mechanical equipment, including ventilation units, such that noise levels from the equipment at the nearest property line would be below 60 dBA.

IMPROVEMENT MEASURE

The following measure is recommended to ensure noise levels within the classrooms are below the EPA’s recommended interior noise level.

Improvement Measure J-1: Interior Noise. The Project should provide insulation or other design features within the structure such that interior noise levels within the classrooms would be below 45 dBA Leq. An acoustician should measure noise levels within the structure to ensure an interior noise level of 45 dBA is met.
K. PUBLIC SERVICES

SETTING

This section describes the existing conditions and service levels for public services that would serve the Project Site, including police and fire protection, schools, parks and recreational services, and community facilities. Information was collected from local authorities and service providers.

Police

The San Francisco Police Department (SFPD) provides police services to the Project Site. The Project Site is in the Metro division of the SFPD and is served by the Central Station at 766 Vallejo Street, about 0.5 miles northwest of the Project Site. The Central Station district comprises the Financial District, Chinatown, North Beach, Fisherman’s Wharf, Telegraph Hill, Nob Hill, and Russian Hill.¹

Fire Department²

The San Francisco Fire Department (SFFD) provides fire services to the Project Site. SFFD stations have “first alarm” areas, the sector of the City for which a given station is primarily responsible. Other nearby stations would respond to that area if needed. Fire Station 2 at 1340 Powell Street at Broadway is “first due” on incidents at the Project Site. Station 13 at 530 Sansome Street and Washington Street, and Station 28 at 1814 Stockton Street, at Vallejo Street are next in order of dispatch succession.

The SFFD is made up of 1,629 uniformed firefighters, paramedics, officers, and inspectors. The SFFD has adequate personnel and staff to meet the needs of the residents and visitors of San Francisco.

² Joanne Hayes-White, Chief of Department, and Andy Zanoff, Office of the Deputy Chief of Administration, San Francisco Fire Department, written communication with Aubrey Refuerzo, PBS&J, April 11, 2007.
School Services

The San Francisco Unified School District (SFUSD) provides school services to the Project area.

Recreation and Parks

The San Francisco Recreation and Parks Department maintains parks and open space within the City. According to the Recreation and Parks Department, average estimates of open space operated by the Department in San Francisco are over 3,300 acres, or approximately 4.5 acres per 1,000 residents (based on 2005 Census data for the City of San Francisco). There is approximately 5.5 total acres of open space per 1,000 residents, according to the Recreation and Open Space Element of the City’s General Plan. There are three parks near the Project Site, Portsmouth Square, across Kearny Street from the Project; Maritime Plaza, about three blocks east of the Project Site; and St. Mary’s Square, about three blocks south of the Project Site.

Community Facilities. Community facilities near the Project Site include the Chinese Cultural Center across Kearny Street from the Project Site, on the third floor of the Hilton Hotel building; the Chinatown Branch of the San Francisco Public Library at 1135 Powel Street, about 0.3 miles west of the Project Site; the North Beach Branch at 2000 Mason Street, about 0.7 miles northwest of the Project Site; the Chinese Hospital at 845 Jackson Street, about 0.3 miles from the Project Site; and the Chinatown YMCA at 855 Sacramento Street, about 0.3 miles from the Project Site.

IMPACTS

Significance Criteria

Based on Appendix G of the CEQA Guidelines, the Project would result in a significant impact on public services if it individually or cumulatively would:

- Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental

3 Written communication from LaForte, Daniel, City and County of San Francisco Recreation and Park Department, to Aubrey Refuerzo, EIP/PBSJ, dated February 27, 2006.

facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for fire protection, police protections, schools, and parks; or

- Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated.

Police Protection Services. As noted above, the Central Station, the station that serves the Project Site, is about 0.5 miles northwest of the Project Site. The Project would increase the demand for public services on the Project Site because the Project would replace a surface parking lot, which requires minimal public services, with a 16-story education use, which could potentially increase the service calls to the SFPD and could require increased crime prevention activities and additional policing of the Project Site and vicinity. However, the Project Site is within a developed urban area which is already served by the police department.

The Mayor’s 2006-2007 Budget includes an eight percent funding increase for policing services in San Francisco, including the hiring of up to 98 additional police officers and support staff.5 Given staffing and funding increases, the SFPD has sufficient resources to accommodate a project of this size. With the planned increases in city-wide personnel, the Central Station would be able to provide the necessary police services and crime prevention programs for the project area. No new stations are proposed in the vicinity of the Project Site.

Additionally, according to the District Police Reports, no police reports have been filed for the Chinatown/North Beach Campus in 2005 or 2006.6 Hence, the Project would have a less-than-significant impact on the need for new police facilities.

Fire Protection Services. The Project would increase the demand for fire protection services within the Project Site and vicinity. However, the Project Site is within a developed urban area which is already served by the fire department. While the SFFD anticipates an increase in demand on fire services, the SFFD is able to minimize potential impacts by shifting primary

5 Gavin Newsom, City and County of San Francisco. Mayor’s Proposed Budget 2006-2007.
response duties to other nearby stations. The SFFD anticipates they would be able to meet the demands of the Project. The Project would be required to comply with all regulations of the 2001 California Fire Code, which establishes requirements pertaining to fire protection systems, including the provision of state-mandated smoke alarms, fire alarm and sprinkler system, fire extinguishers, required two means of egress with appropriate distance separation, and emergency response notification systems. Since the Project would comply with the 2001 Fire Code regulations and the SFFD would be able to meet the Project demand, the Project would not result in the need for new fire protection facilities, and would not result in significant impacts to the physical environment. The Project would provide superior fire protection for the occupants than the current leased spaces, because none of the leased spaces comply with the 2001 California Fire Code.

Schools. The Project is not expected to contribute to the need for new school facilities that would result in physical impacts. The Project, which consists of a City College campus, would be beneficial with regards to school services.

Recreation and Park. The Recreation and Park Department has stated that there is a high demand for the park facilities and open space in the Project area. Furthermore, the Department expects future demand on recreational facilities to increase over the next five years due to under-construction and planned development projects throughout the city. The students and faculty from the Project would likely increase the demand for park and recreation services and facilities. However, the Project would relocate students and faculty, and thus would not substantially increase the number of students and faculty members in the Chinatown neighborhood.

Furthermore, the Project would include a 2,183 square-foot fourth floor terrace for students, faculty, and employees. Therefore, the Project would not be expected to exceed the capacity of parks and recreational facilities in the vicinity of the Project Site and the demand generated for parks and recreational facilities by the Project would not result in a significant impact on existing services and facilities.
Community Facilities. The addition of residents from the Project would not increase the demand for community facilities because the Project would provide facilities for students, faculty, and employees. The Project would benefit community facilities because it would provide a library.

Cumulative Impacts

Environmental effects related to public services would be less than significant. There is one foreseeable project in the vicinity of the Project Site, the St. Mary’s School, which would be directly north of the Project Site. The St. Mary’s School is also infill development that is already served by the police and fire departments. The St. Mary’s School is an educational use with a private playground and thus would not increase demands on schools or substantially increase demands on parks. Thus, the Project would have no cumulative impact related to public services.
L. UTILITIES

SETTING

The utilities addressed in this section include water supply, storage, and distribution; storm drainage; wastewater collection, transmission, and treatment; solid waste collection and disposal; and gas and electric supply and distribution. Information regarding existing conditions was collected from local service providers.

Water

Water services are provided by the San Francisco Public Utilities Commission (SFPUC). The SFPUC serves 2.4 million residential, commercial, and industrial customers in the Bay Area; approximately one-third of delivered water goes to retail customers in San Francisco. The Hetch Hetchy watershed, located in Yosemite National Park, provides approximately 85 percent of San Francisco’s total water needs; the Alameda and Peninsula watersheds produce about 15 percent of the total water supply.

The SFPUC has developed a Recycled Water Master Plan to provide guidance for implementing recycled water projects in San Francisco. Recycled water will help the City better meet its long-term water demands in a more reliable and sustainable manner.

Urban Water Management Plan

The California Urban Water Management Act of 1983 (Water Code Section 10610 – 10657) requires that all urban water suppliers who provide water for municipal purposes to more than 3,000 customers or supply more than 3,000 acre-feet of water annually must prepare an Urban Water Management Plan (UWMP). These Plans were first submitted to the California Department of Water Resources (DWR) in 1985 and submittal of updated Plans to the DWR is required every five years. In its Urban Water Management Plan, an urban water supplier must describe and evaluate sources of water supply, efficient water uses, demand management measures, implementation strategy and schedule, and other relevant information and programs.
On December 13, 2005, the SFPUC adopted the 2005 Urban Water Management Plan for the City of San Francisco.

Wastewater and Stormwater\(^1\)

Stormwater and wastewater in the City is collected and treated by the San Francisco Public Utilities Commission. The wastewater system provides the City with wastewater collection, treatment and disposal. The wastewater collection, treatment and disposal system consists of a combined sewer system (which collects both sewer and storm water), three water pollution control plants and effluent outfalls to the San Francisco Bay and Pacific Ocean. The combined sewer system reduces pollution in the San Francisco Bay and Pacific Ocean by treating urban runoff that would otherwise flow to the Bay and Ocean. The collection system consists of approximately 900 miles of underground pipes throughout the City.

The SFPUC treats and discharges approximately 84 million gallons per day of treated wastewater during dry weather to the San Francisco Bay and Pacific Ocean. During wet weather, with additional facilities and increased operations, the plants can treat approximately 465 million gallons of combined flows per day.

The Project Site consists of a surface parking lot and is completely covered with impervious surfaces.

Solid Waste\(^2\)

Solid waste from San Francisco is transferred to the Altamont Landfill at 10840 Altamont Pass Road in Livermore (landfill). The landfill is owned and operated by Waste Management of Alameda County. The landfill has an annual solid waste capacity of 2,226,500 tons for the City of San Francisco. The City is well below its allowed capacity, generating approximately 550,000

tons of solid waste in 2005. Recycling, composting, and waste reduction efforts are expected to increasingly divert waste from the landfill.

Assembly Bill 939

To minimize the amount of solid waste that must be disposed of by transformation and land disposal, the State Legislature passed Assembly Bill 939, the California Integrated Waste Management Act of 1989 (AB 939), effective January 1990. According to AB 939, all cities and counties in California were required to divert 25 percent of all solid waste from landfill or transformation facilities by January 1, 1995, and 50 percent by January 1, 2000. San Francisco diverted 36 percent of solid waste in 1995, 46 percent in 2000, and about 64 to 67 percent from 2002 through 2005.

Energy

The Project Site receives its natural gas and electric services from Pacific Gas & Electric Company (PG&E). PG&E provides these services to approximately 15 million people throughout a 70,000-square-mile service area in northern and central California. California’s natural gas supplies come predominantly from California, the Southwestern U.S., the Rocky Mountains, and Canada. PG&E operates a grid distribution system that channels all energy produced at the different sources into one large energy pool for distribution throughout the service territory.

Title 24 Building Energy Efficiency Standards

Building energy consumption is regulated under Title 24 of the California Code of Regulations. The efficiency standards contained in Title 24 apply to new residential and non-residential construction, and regulate energy consumed for heating, cooling, ventilation, water, heating, and lighting.

3 Drda, Brad, Environmental Services Manager, Sanitary Fill Company, Personal communication with EIP Associates, March 14, 2006.
IMPACTS

Significance Criteria

Assessments of significant impacts are made for a given utility when additional resources would be required to serve a proposed project at acceptable service standards, or when serving a project under current resources would reduce services to the public below accepted or current standards. Potential significant impacts on utilities, for example, may include the necessity to extend infrastructure, the construction of which may have environmental impacts. Service standards of a particular local service provider are often based on reference standards developed by national professional associations, standards required by law, or standards embodied in a city or county’s general plan or other land use tools. Specific impacts for a particular project are developed partially from such codified standards or formulas, and partially from an assessment of the service provider based upon their review of site development.

The Project would result in significant utilities impacts if it individually or cumulatively would:

- Exceed wastewater treatment requirements of the applicable RWQCB;
- Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects;
- Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects;
- Have insufficient water supplies available to serve the Project from existing entitlements and resources;
- Result in a determination by the wastewater treatment provider that serves or may serve the Project that it has inadequate capacity to serve the Project’s projected demand in addition to the provider’s existing commitments;
- Be served by a landfill with insufficient permitted capacity to accommodate the Project’s solid waste disposal needs;
- Fail to comply with federal, state, and local statutes and regulations related to solid waste; or
- Result in a determination by the gas and electric provider that it has inadequate capacity to serve the Project’s projected demand in addition to the provider’s existing commitments.
Wastewater/Stormwater. The Project Site is already served by wastewater and stormwater facilities. The Project would replace impervious surfaces with impervious surfaces. Thus, the Project would not increase demand on the City’s storm drainage system because the Project is expected to result in similar stormwater runoff than under existing conditions.

The Project would replace a surface parking lot, which does not contribute wastewater. The Project Site is in an urban area which is already served by utilities infrastructure. Additionally, the Project would contribute wastewater as a commercial structure, and thus would not be expected to increase the flow of wastewater such that an expansion of the existing infrastructure would be required. Project-related wastewater and storm water would flow to the City’s combined storm water and sewer system and would be treated to standards contained in the City’s National Pollutant Discharge Elimination System (NPDES) Permit for the Southeast Water Pollution Control Plant prior to discharge into the Bay. The NPDES standards are set and regulated by the Bay Area Regional Water Quality Control Board (RWQCB); therefore, the Project would not conflict with RWQCB requirements in that the Project would not require the expansion of wastewater/storm water treatment facilities or an extension of a sewer trunk line as the site is currently served by existing facilities. Therefore, no new wastewater/storm water infrastructure would be required to serve the Project, no impact would result from new construction.

Water. In December 2005, the SFPUC adopted a resolution finding that the SFPUC’s Urban Water Management Plan (UWMP) adequately fulfills the requirements of the water assessment for water quality and wastewater treatment and capacity. As long as a Project is covered by the demand projections identified in the UWMP,\(^5\) which includes all known or expected development projects and projected development in San Francisco at that time through 2025. The Project Site is within a developed area of San Francisco and is zoned for more intense uses than the existing parking lot. Development of such site would be of UWMP projections. Therefore, the Project would not exceed the UWMP’s water supply projections. No additional construction of water supply infrastructure would be required to serve the proposed project or cumulative development.

Solid Waste. As noted above, the landfill has an annual solid waste capacity of 2,226,500 tons for the City; the City is well below its allowed capacity, generating approximately 550,000 tons of solid waste in 2005. Recycling, composting, and waste reduction efforts are expected to increasingly divert waste from the landfill. The Board of Supervisors adopted a plan in 2002 to recycle 75 percent of annual wastes generated by 2010. The District would be expected to participate in the City’s recycling and composting programs and other efforts to reduce the solid waste disposal stream. The landfill is expected to remain operational for 20 or more years, and has current plans to increase capacity by adding 250 additional acres of fill area. With the City’s increased efforts in recycling and the landfill expansion, the City’s solid waste disposal demand could be met through at least 2026. Given the existing and anticipated increase in solid waste recycling and the proposed landfill expansion in size and capacity, the impacts on solid waste facilities from the proposed project would be less than significant.

Energy. The energy consumption demands generated by the Project would conform to the State’s Title 24 energy conservation standards for new construction. The District intends that the Project would exceed the Title 24 requirements by 20 percent, but this is subject to final design. Consequently, the Project would not be expected to wastefully use gas and electricity.

Additionally, as noted in the Project Description, the Project would be designed to meet LEED Silver standards. However, all individual LEED elements are subject to budget, availability, and final design confirmation.

Since the Project would comply with Title 24 conservation standards and would be served by PG&E, the Project would not directly require the construction of new energy generation or supply facilities and the Project’s impact on energy would be less than significant.

Cumulative Impacts

The Project would not result in significant impacts to utilities. Since the Project’s contribution is not considered cumulatively considerable, the Project would not have a significant cumulative impact on water services. With sufficient landfill capacity to accommodate solid waste generated in the future and increasing diversion of solid waste to recycling, the Project in combination with
other growth in the landfill service area would have a less-than-significant cumulative impact on solid waste disposal services. The energy consumption demands generated by the Project and future development within PG&E’s service area would conform to the State’s Title 24 energy conservation standards for new construction. Consequently, the Project in combination with other cumulative development in the City would not be expected to wastefully use gas and electricity. Existing and planned gas and electric service to the City would be provided to meet the needs of the cumulative development. The California Public Utilities Commission requires PG&E to provide service to its existing and potential customers. Since the Project and future cumulative development would comply with Title 24 conservation standards and would be served by PG&E, the cumulative new development would not require the construction of new energy generation or supply facilities that are directly attributable to growth in the City. Thus, the cumulative impact on energy demand with the Project would be less than significant.
IV. OTHER CEQA CONSIDERATIONS

A. IMPACTS FOUND NOT TO BE SIGNIFICANT

The following topics would have less-than-significant impacts with implementation of the Project: Agricultural Resources, Biological Resources, Mineral Resources, Hydrology, and Population and Housing.

Agricultural. The Project Site is a paved surface parking lot. No agricultural resources exist on the Project Site.

Biological Resources. The Project Site is currently completely paved, with the exception of five street trees. Two trees are located within the sidewalk along Kearny Street, and three trees are located within the sidewalk along Washington Street. These trees would be removed and replaced with implementation of the Project. The trees are surrounded by pavement and located in a busy urban area; thus, these trees are unlikely habitat for wildlife.

However, resident and migratory birds may use the on-site trees for nests. Thus, the Project could result in disturbances to nesting birds that may be located on the Project Site. Nesting birds, their nests, and eggs are fully protected by Fish and Game Code (Sections 3503, 3503.5) and the Migratory Bird Treaty Act of 1918. Destruction of a nest would be a violation of these regulations and is considered a potentially significant impact.

The following mitigation measure would reduce potential impacts to nesting birds to a less-than-significant level.

Mitigation Measure BR-1: Pre-construction Surveys. Conduct pre-construction surveys for nesting birds and implement protective measures if identified. The removal of trees, shrubs, or weedy vegetation shall be avoided during the February 1 through August 31 bird nesting period to the extent possible. If no vegetation or tree removal is proposed during the nesting period, no surveys shall be required. If it is not feasible to avoid the nesting period, a survey for nesting birds shall be conducted by a qualified wildlife biologist no earlier than 14 days prior to the removal of trees, shrubs, grassland vegetation, buildings, grading, or other construction activity. Survey results shall be valid for 21 days following the survey. The area surveyed shall include all
construction sites, access roads, and staging areas, as well as areas within 150 feet of the areas to be cleared or as otherwise determined by the biologist.

In the event that an active nest is discovered in the areas to be cleared, or in other habitats within 150 feet of construction boundaries, clearing and construction shall be postponed for at least two weeks or until a wildlife biologist has determined that the young have fledged (left the nest), the nest is vacated, and there is no evidence of second nesting attempts.

Mitigation Measure BR-1 would reduce potential impacts to migratory birds to a less-than-significant level, the Project would have less-than-significant impacts to biological resources.

Mineral Resources. According to the San Francisco General Plan, mineral resources are not present in the City to any appreciable extent. No known mineral deposits exist on or near the Project Site. Furthermore, the Project Site is completely paved. The Project would not result in the loss of a locally or regionally important mineral resource.

Hydrology. As noted above, the Project Site is currently completely paved, with the exception of five street trees surrounded by pavement; thus, the Project could not create new impervious surfaces such that drainage would be affected. The Project would not result in a substantial change in drainage patterns and runoff volumes.

The Project would result in excavation to a maximum depth of about 16 feet below grade. During construction, requirements to reduce erosion would be implemented pursuant to California Building Code (CBC). Chapter 33 of the CBC contains specific requirements pertaining to site demolition, excavation, and construction to protect people and property from hazards associated with excavation. Chapter 70 of the CBC regulates grading activities, including drainage and erosion control. These erosion reduction measures would ensure protection of water quality.

As described in Section III.F. Hazardous Materials, groundwater samples from the Project Site were tested for petroleum hydrocarbons, volatile organic compounds (VOCs), and soluble metals. The groundwater testing found that the groundwater beneath the Project Site has not been impacted by any on or off-site activities. The groundwater sample did not exceed the San Francisco Public Utilities Commission disposal threshold for direct disposal into the City’s
combined sewer system.\(^1\) Therefore, impacts to groundwater and water quality would be less-than-significant levels.

Population and Housing. The Project would not displace or introduce housing. The Project would employ approximately 127 faculty and employees, an increase of nine faculty and employees. There would also be approximately 1,700 students on campus at a given time during a weekday. However, these individuals would relocate from existing Chinatown/North Beach locations, and would not be a new population added to the City. Therefore, the Project would result in less-than-significant impacts to population and housing. Growth inducement is discussed further below.

B. SIGNIFICANT ENVIRONMENTAL EFFECTS THAT CANNOT BE AVOIDED IF THE PROPOSED PROJECT IS IMPLEMENTED

In accordance with Section 21100 (b)(2)(A) and 21100.1(a) of the California Environmental Quality Act (CEQA), and Section 15126.2(b) of the State CEQA Guidelines, the purpose of this chapter is to identify significant impacts that could not be eliminated or reduced to an insignificant level by implementing mitigation measures included as part of the project or by other mitigation measures that could be implemented, identified in Chapter IV, Mitigation Measures.

As documented in Chapter III, Sections A through J, implementation of the Project would result in significant unavoidable impacts (significant impacts that could not be reduced to an insignificant level through implementation of mitigation measures) with regard to visual quality. The building would alter views to the northeast of low-rise areas on the Project block as seen from Portsmouth Square, with views of the 16-story Project. This change in views from public open space would be considered a substantial adverse change. Thus, the Project would have a significant adverse effect on views from a public area. Section V. Alternatives, identifies Project alternatives that would have reduced height and would avoid this significant adverse impact. Section III.B, Visual Quality, found that the height of the Project (244.5 feet tall to the top of the mechanical penthouse) could affect the visual quality context of historic.

\(^{1}\) Treadwell & Rollo, *Soil and Groundwater Investigation and Management Plan, City College Chinatown/North Beach Campus, 800 Kearny Street*, July 25, 2005.
resources near the Project Site (such as the Old Transamerica Building) due to the height and design of the Project in the context of the Chinatown, North Beach, and Jackson Square neighborhoods. Therefore, the Project was determined to have a significant adverse impact on visual character.

Under the full occupancy assumption, the Project contribution to the future growth in MUNI volumes on the Southeast screenline routes would be about seven percent, and would exceed the five percent threshold generally used by the Planning Department to determine adverse impacts. Although the full-occupancy conditions is considered a worst-case assumption compared to current class schedule patterns, the Project’s increase in demand on transit is conservatively judged to have a significant impact on transit capacity. Since there are no measures that could be implemented directly by the District to reduce this transit impact, this impact would be significant and unavoidable.

C. GROWTH INDUCEMENT

Approximately two workers are currently employed by City Park at the existing surface parking lot. As indicated above, the Project would replace these workers with approximately 127 faculty and employees relocated from existing Chinatown/North Beach Campus locations, with the exception of about nine new faculty and employees. There would also be approximately 1,700 students on campus at a given time during a weekday.

Most of these employees and students already live or work in the area. These additional employees would not substantially induce growth on the Project Site or in other areas. Therefore, no Project growth inducement impact is anticipated.
V. ALTERNATIVES

This Section identifies alternatives to the Project and discusses the associated environmental impacts. The range of alternatives presented below focuses on those that would feasibly attain most of the basic objectives of the Project and/or avoid or substantially lessen the Project’s significant environmental effects. The primary factor in selecting these alternatives is the ability of the alternative to avoid or substantially reduce a significant effect on the Project. As described in Chapter III, Environmental Setting and Impacts, the Project would result in one significant and unavoidable impact to visual resources.

Other factors taken into account in selecting these alternatives include site suitability, economic viability, availability of infrastructure, and the ability of the District to acquire, control, or otherwise have access to alternative sites. The analysis below is intended to allow meaningful evaluation and comparison with the Project (CEQA Guidelines, Section 15126).

A. PREVIOUSLY EXPLORED ALTERNATIVES

As described in Chapter II, Project Description, previous projects and designs were proposed for the Project block, as discussed in the 1998 EIR, to meet the District’s objectives for development of a Chinatown/North Beach Campus on Lots 4, 5, and 12. Those former projects are alternatives considered but rejected from further analysis herein because they would require demolition of the Colombo Building on Lot 4, a significant historic resource, demolition of the Fong Building on Lot 12, which would displace housing, and because the District intends to sell the Colombo Building on Lot 4 and has sold the Fong Building on Lot 12.

The 1998 EIR also included two project alternatives, Development of Lots 4 and 5/No Housing Displacement Alternative, and a Preservation Alternative. The first alternative would develop a smaller campus than the 1998 project on Lots 4 and 5, and avoid demolition of the Fong Building. This alternative is rejected from further analysis herein because it would not meet Project objectives related to program requirements, would require demolition of the Colombo Building on Lot 4.
Lot 4, a significant historic resource (as noted above, the District intends to sell the Columbo Building and has sold the Fong Building).

The Preservation Alternative would develop a smaller campus than the 1998 project on Lots 5 and 12 because it would retain the Columbo Building; however, this alternative would demolish the Fong Building. This alternative is rejected from further analysis herein because it would not meet Project objectives related to program requirements, would demolish of the Fong Building, which would displace housing, and which the District no longer owns.

The 1998 EIR also considered eight alternative sites: 940 Filbert Street; 720 California Street; 750 California Street; Broadway Street and Sansome Street; Broadway Street and Battery Street; Broadway Street and Davis Street; and Lots 6 and 7 on Washington Street between Kearny Street and Columbus Avenue. Updated information regarding their potential as Project alternatives are provided in Table 24.

<table>
<thead>
<tr>
<th>Location</th>
<th>Reason For Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>940 Filbert Street (existing Chinatown/North Beach main campus)</td>
<td>This site is examined as an alternative to the Project as part of Alternative E.</td>
</tr>
<tr>
<td>720 California Street (91,657 gross-square-foot [gsf] building)</td>
<td>720 and 750 California Street currently include an occupied building and parking lot. The lease for these sites has recently been renewed through 2020.</td>
</tr>
<tr>
<td>750 California Street (a vacant site between Stockton and Powell)</td>
<td>This site is controlled by the Mayor’s Office of Housing or the San Francisco Redevelopment Agency and is not available.</td>
</tr>
<tr>
<td>Broadway and Sansome Street (a vacant 17,846 square-foot, City-owned site)</td>
<td>This site is under development for affordable housing.</td>
</tr>
<tr>
<td>Broadway and Battery Street (vacant, 30,938 square-foot, City-owned site)</td>
<td>The site is designated for joint development with adjacent Port of San Francisco property. The site would have major height and bulk constraints as a waterfront area property.</td>
</tr>
<tr>
<td>Broadway and Davis Street (vacant, 10,805 square-foot, City-owned site)</td>
<td>The I-Hotel building and the St. Mary’s Center garage has been constructed on part of the site, and the remainder of the site is approved for the St. Mary’s School.</td>
</tr>
</tbody>
</table>
The 1998 EIR also noted that the District had considered 12 other off-site alternatives for a permanent location, including the current Project Site. These sites are listed below in Table 25, with the exception of the Project Site, along with the reason for rejection. Generally, these sites were not pursued because of inadequate size, unavailability, or development restrictions.

<table>
<thead>
<tr>
<th>Location</th>
<th>Reason for Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garage, parking lot and Pagoda Theater corner of Filbert Street &</td>
<td>Not enough space available for program needs.</td>
</tr>
<tr>
<td>Columbus Avenue</td>
<td></td>
</tr>
<tr>
<td>Our Lady of Guadalupe Church - Between Broadway near Powell Street</td>
<td>Not enough space available for program needs.</td>
</tr>
<tr>
<td>Former St. Mary’s School - 880 Clay Street at Stockton Street</td>
<td>This site is examined in the Alternatives section as Alternative C.</td>
</tr>
<tr>
<td>Garage on Powell between Union Street & Green Street</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>Garage on Powell between Washington Street & Jackson Street</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>Properties at the corner of Broadway & Powell Street</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>Parking lot on Vallejo Street across from Central Police Station</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>between Stockton Street & Powell Street</td>
<td></td>
</tr>
<tr>
<td>Central Police Station Vallejo Street</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>1300 Mason Street</td>
<td>Not available and would not have adequate space for program needs.</td>
</tr>
<tr>
<td>965 Clay Street Chinatown YWCA</td>
<td>Not enough space available for program needs.</td>
</tr>
<tr>
<td>Broadway and The Embarcadero</td>
<td>Not available for purchase and thus would not allow for state funding.</td>
</tr>
</tbody>
</table>

PROJECT ALTERNATIVES

The following alternatives are analyzed in this section:

- No Project Alternative
- **Alternative A**: A Two-Site Alternative with a 65-foot building on Lots 9 and 10 and a 65-foot building on Lot 5
- Alternative B
V. Alternatives

- Variant 1: A Two-Site Alternative with a 201-foot building on Lots 9 and 10 and a 65-foot building on Lot 5
- Variant 2: A Two-Site Alternative with a 201-foot building on Lots 9 and 10 and a 78.5-foot building on Lot 5

- Alternative C: A Two-Site Alternative with the 880 Clay Street building and a 188.5-foot building on Lots 9 and 10

- Alternative D: Two-Site Alternative with the St. Mary’s School
 - Variant 1: Purchase or lease two floors of the St. Mary’s School and construct a building on Lots 9 and 10 for the remainder of the programs.
 - Variant 2: Construct additional two floors within the St. Mary’s School and construct a building on Lots 9 and 10 for the remainder of the programs.
 - Variant 3: Construct building on Lots 9 and 10 with a cantilever over the St. Mary’s School

- Alternative E: Off-Site Alternative with a new building at 940 Filbert Street

Following public review and certification of the EIR, the District Board of Trustees will consider the alternatives set forth in the EIR as part of its decision whether to approve the project. At that time, the Board will determine whether adoption of an alternative to the Project would be feasible or infeasible, taking into account specific economic, legal, social, technological, and other considerations, per CEQA Guidelines Sections 15091, 15092, and 15093.

NO PROJECT ALTERNATIVE

Under the No Project Alternative, there would be no physical change to the Project Site. If this alternative were implemented, none of the impacts associated with the Project would occur. In general, the environmental characteristics of the No Project Alternative would be those described in the Setting sections of this EIR (see Chapter III, Environmental Setting and Impacts, for a discussion of the existing conditions or setting for each impact).

The No Project Alternative would have no construction or operational impacts. Existing transportation conditions around the site would continue. Base conditions with cumulative development would occur without Project development. The No Project Alternative would not alter the existing shadow impacts on Portsmouth Square. The No Project Alternative would not
V. Alternatives

alter the current visual conditions, thereby avoiding the significant visual impact caused by the proposed Project.

Under this alternative, there would also be no impacts to Land Use, Historic Resources, Transportation, Geology and Soils, Hazards, Wind, Air Quality, Noise, Public Services, and Utilities. Because construction would not be required, no mitigation measures related to Air Quality, Noise, and Cultural Resources would be required under the No Project Alternative.

The No Project Alternative would not achieve any of the District’s identified objectives. Specifically, it would not provide a new Chinatown/North Beach Campus to meet the long identified needs of City College’s educational mission in this area of San Francisco. The current City College programs in the neighborhood would continue to be provided in dispersed, leased locations that are fiscally imprudent and educationally inefficient.

ALTERNATIVE A

Alternative A would be a four-floor, 65-foot building on Lots 9 and 10 (the Project Site), and a four-floor, 65-foot building on Lot 5. Without consideration of the Planning Code bulk requirements, the two buildings would total approximately 77,468 gross square feet (gsf) (about 50,444 gsf on Lots 9 and 10, and 27,024 gsf on Lot 5), or about 38,750 assignable square feet (asf).

The height limit cannot be deviated by a grant of variances. Rather, the Planning Code has to be amended to increase the height limit. If these buildings were to comply with the Planning Code bulk requirements, the maximum diagonal dimension would be 125 feet above 40 feet (consistent with the Planning Code 65-A Height and Bulk district requirements). Within these limits, the footprints of the upper two floors in these buildings in this alternative would be considerably limited.

Assuming the maximum floor area of 77,468 gsf, the uses in this alternative would be similar to the 167,652 gsf Project, although they would be distributed between the two buildings. This alternative could accommodate about 38,750 asf compared to the 83,325 asf for the Project, or
about 45 percent of the entire program proposed for the Project. The two buildings in this alternative would be able to accommodate the following:

Lots 5
- 3 Classrooms/Labs
- One Faculty Preparation Room
- Student Lounge
- Bookstore
- Security

Lot 9 and 10
- 15 Classrooms and Labs
- 3 Faculty Preparation Rooms
- Bookstore
- Admissions/Counseling/Assessment

The following program area would not be accommodated within these two buildings:
- 28 Classrooms and Labs
- Gallery
- Additional Student Lounges
- Library
- Gerontology
- Meeting Rooms
- Faculty Offices and Services
- Administration offices

Section III.B, Visual Quality, found that the 244.5-foot-tall Project would be considered to have a significant adverse effect on the visual context of Columbo Building, a structure eligible for listing on the National Register, and on views from Portsmouth Square. This alternative, with 65-foot buildings on two sites, would avoid this significant visual impact, because the height would be greatly reduced and neither building would be visible from afar.

The 65-foot building on Lots 9 and 10 would substantially reduce, but not avoid, a new shadow on Portsmouth Square. The building would add some new shade to the northeast corner of Portsmouth Square from May to July, during the first 10 minutes in the first hour after sunrise, a more limited effect than with the Project. As with the Project, the alternative’s shadow effects
would not be considered a significant adverse impact on the use of Portsmouth Square, because of the limited time and area of the park that would be affected.

Alternative A would require construction activities similar to the Project, and would have temporary, short-term construction impacts. Development of two sites simultaneously would increase truck movements, sidewalk and street closures and temporary construction effects over a wider area. With mitigation, these impacts would be less than significant. As with the Project, Alternative A would not have significant adverse impacts on Land Use and Zoning, Historic Resources, Transportation, Geology and Soils, Hazards, Wind, Air Quality, Noise, Public Services, or Utilities.

Alternative A would provide less than about one-half of the Project floor area and would not meet the District’s programmatic needs for the Chinatown North Beach Campus. The District would be required to lease additional space in the Chinatown North Beach area in order to maintain its current program offerings. Project objectives related to the location of the new campus would be met because Alternative A would be on the same block as the Project. Both Alternative A and the Project would provide appropriate site accessibility, transit accessibility, and adequate disabled, pedestrian, and bicycle access. The Alternative A buildings would be less efficient space because the classrooms and other required space would be split into two buildings, and leased space on other sites.

Construction costs for two buildings would be higher than for one building with the same amount of square footage. Additional construction costs would include the need for two elevator cores, staging on a confined urban environment for construction on two lots on the same block and two mechanical systems. Operational costs would also increase due to the need for security services for two buildings, additional staff for cleaning, and faculty support staff to serve the separate building. There would also be less efficient use of utilities with two HVAC, elevator and lighting systems. In addition, there would also be lease costs for the programs that could not be accommodated with this alternative.
ALTERNATIVE B

Alternative B would be a 65 or 78.5-foot building with a mechanical penthouse on Lot 5, and a 14-story, 201-foot tall tower with a reduced mechanical penthouse on Lots 9 and 10 (The basement would accommodate some mechanical equipment and would reduce the roof area occupied by mechanical functions. The mechanical penthouse would be set back farther from the street than the Project penthouse.) This alternative would accommodate the same programs as the Project. The uses in this alternative would be similar to the Project, although they would be distributed between two buildings.

Variant 1 would be a 65-foot-tall building on Lot 5. This variant would accommodate two classrooms, the culinary program, and a multi-purpose room within the Lot 5 building.

Variant 2 would be a 78.5-foot-tall building on Lot 5. This variant would accommodate five classrooms, the culinary program, and a multi-purpose room within the Lot 5 building.

Section III.B, Visual Quality, found that the 244.5-foot-tall Project would be considered to have a significant adverse effect on the visual context of Columbo Building, a structure eligible for listing on the National Register, and on views from Portsmouth Square. This alternative and its variant, with a 201-foot building with a smaller mechanical penthouse on the Lots 9 and 10, would reduce, but not avoid this significant visual impact.

Alternative B would require construction activities similar to the Project, and would have temporary, short-term construction impacts which would be less than significant after mitigation. The construction activities associated with Alternative B would be more complicated because there would be construction materials and staging for two sites. As with the Project, Alternative B would not have significant adverse impacts on Land Use and Zoning, Historic Resources, Transportation, Geology and Soils, Hazards, Shadows, Wind, Air Quality, Noise, Public Services, or Utilities.

Alternative B would meet the District’s site selection criteria for the new campus in terms of transit accessibility, and could be designed to provide adequate disabled, pedestrian, and bicycle access. Alternative B would be able to accommodate the programs envisioned by the District, but
this alternative would result in less efficient space because the campus would be split into two buildings.

According to the District, the additional construction and operating costs associated with the construction of two buildings would be about 27 million dollars higher than one building with about the same amount of floor area.\(^1\) Thus, the District may not be able to fund the construction of both buildings concurrently, resulting in the need to reduce the program offered by the District for the Chinatown North Beach Campus.

ALTERNATIVE C

Alternative C would be a two-site alternative; the District would purchase, renovate and adaptively reuse the 880 Clay Street building (but would retain the Childcare Center, rooftop playground, and housing at that building) at the northeast corner of Clay and Stockton Street, and construct a 188.5-foot building with 13 stories and a mechanical penthouse on Lots 9 and 10 (to accommodate the programs proposed for the Project). The District currently leases space at 880 Clay Street. Expanded use of 880 Clay Street would accommodate approximately 15 classrooms, and teacher preparation rooms, the equivalent of three floors of the Project. Therefore, this alternative would reduce the Project building on Lots 9 and 10 from 16 to 13 stories (from 228 feet tall to 188.5 feet tall, a reduction of 40.5 feet). This alternative would provide for the full programs proposed with the Project, distributed between the two buildings.

While Alternative C would not occupy the residential portion of 880 Clay Street, this alternative would displace 18 small retail businesses with street frontage and would require relocation of the residential entry currently through the retail lobby to Spofford Street to separate the District’s use from the residential uses.

880 Clay Street would have to be seismically retrofitted to school building standards. Expansion of the 880 Clay Street building would be limited because it is a historic resource that has been determined to be eligible for listing in the National Register of Historic Places and is located in

\(^1\) Bovis, General Summary for San Francisco City College Chinatown/North Beach Campus, August 22, 2006.
the proposed Chinatown Historic District. Renovation of the building for the District’s use would be constrained in order to avoid an adverse effect on a significant historic resource.²

Section III.B, Visual Quality, found that the 244.5-foot-tall Project would be considered to have a significant adverse effect on the visual context of Columbo Building, a structure eligible for listing on the National Register, and on views from Portsmouth Square. This alternative with 188.5-foot building on the Lots 9 and 10 would not avoid this significant visual impact because the height would not be greatly reduced.

Alternative C would require construction activities similar to the Project, and would have temporary, short-term construction impacts which would be less than significant after mitigation. The 880 Clay Street building at Clay Street and Stockton Street are both relatively congested streets, each serving major transit lines (1-California, 30-Stockton, 45-Union). Truck loading, sidewalk and street closures and other construction staging would likely to be more disruptive at this location, compared to conditions at the Project Site.

As with the Project, Alternative C would not have significant adverse impacts on Land Use and Zoning, Historic Resources, Transportation, Geology and Soils, Hazards, Shadows, Wind, Air Quality, Noise, Public Services, or Utilities.

Alternative C would achieve some, but not all, of the District’s objectives. Project objectives related to the location of the new campus would be met by Alternative C; for example, this alternative would provide appropriate site accessibility, transit accessibility, and could be designed to provide adequate disabled, pedestrian, and bicycle access. Alternative C would meet the program area requirements; however, this alternative would use space less efficiently because the campus would be split in two buildings about 0.4 miles apart. The distance would not allow the campus to function as one cohesive unit, which is one of the Project objectives.

Similar to Alternative B, this Alternative would increase the operating costs associated with two buildings, (such as utilities costs for two buildings, two sets of maintenance and security

² Mark Luellen, preservation Coordinator, San Francisco Planning Department, electronic correspondence with PBS&J, March 30, 2007.
V. Alternatives

The cost of purchase and costs associated with the adaptive reuse of the 880 Clay Street building and the cost of the 13-story building on Lots 9 and 10 would be higher than new construction at the Project Site, and could limit District’s ability to fund all campus programs concurrently.

Additionally, this alternative would limit some of the classroom conditions. With Alternative C, four of the proposed classrooms at 880 Clay Street would not have windows and two classrooms would be located in the basement.

Alternative C would also include the additional operating costs associated with two buildings, as described above under Alternatives A and B.

ALTERNATIVE D

Alternative D would use space in the planned St. Mary’s School or in the St. Mary’s School air space. This would result in a shorter building than the Project on Lots 9 and 10.

Variant 1 would lease space for City College programs from the future St. Mary’s School, and connect this space to the Project. However, the St. Mary School programs require all the space in their approved project. Therefore, this space is not available.

Variant 2 would add floors to the St. Mary’s Building for use by the District was also considered; however, the foundation of the St. Mary’s School building is not designed to support any additional floors. The St. Mary’s School, as a private school, is subject to the California Building Code, and the City College Campus is subject to the more stringent requirement of the California Building Code governing public schools. This option would not be feasible because the proposed St. Mary’s School (which is part of one building that also consists of the built I-Hotel building and St. Mary’s Center Garage) would be required to comply with the California Building Code governing public schools. Furthermore, there would be openings along the property line to provide access to the City College space located within the St. Mary School.

3 Meeting between the San Francisco City College District and St. Mary’s School, February 28, 2007.
4 Meeting between the San Francisco City College District and St. Mary’s School, February 28, 2007.
Variant 3 would use the air space above the future St. Mary’s School. The Project above 75 feet would have floors that would cantilever over the St. Mary’s School. This portion of the air space above St. Mary School would be incorporated into Lots 9 and 10 to allow larger floor plates above a certain floor.

The Project architects determined that this option would be infeasible because the cantilever would be limited to 10 feet, which would not provide additional classrooms per floor, but only provide larger classrooms. Furthermore, the increased dimensions of the structural frames to support the cantilever would increase the height of the building for the same number of classrooms, labs and other spaces.

To accommodate the program with fewer floors, the cantilever would have to be approximately 35 feet long, which would allow for two additional classrooms on each cantilevered floor. A cantilever of this length would result in a substantial increase in the depth of the structure (roughly at least twice the existing depth). To compensate for the deeper structure, the floor to floor dimension would need to increase. Overall, the building height could be reduced by approximately one story and still accommodate the current program. However, this approach would at least double the structural cost. The large structural beams and columns would result in inefficient floor to floor dimensions, and reduced usable floor area.

Furthermore, cantilevering a building over a property line and over another building introduces numerous code concerns, many which the Department of the State Architect (DSA) may not allow.

Section III.B, Visual Quality, found that the 244.5-foot-tall Project would be considered to have a significant adverse effect on the visual context of Columbo Building, a structure eligible for listing on the National Register, and on views from Portsmouth Square. This Alternative on Lots 9 and 10 would not avoid this significant visual impact because the height would not be greatly reduced under any variants.

ALTERNATIVE E

Alternative E would be a new City College campus at 940 Filbert Street. The District currently leases this site from the San Francisco Unified School District (SFUSD). This site is located in the middle of the block between Taylor Street and Jones Street, and slopes down north from
Filbert Street. The existing building frontage is on Filbert Street, and the rear of the building can be accessed from Valparaiso Street, which extends from Jones Street midway between Filbert Street and Greenwich Street.

Under this alternative, the District would purchase this property, demolish the building and would replace it with a new structure that could accommodate the programs with the Project. The building would be approximately 135 feet high, nine stories with a mechanical penthouse, at Filbert Street. It would be approximately 152 feet tall and 10 stories high, with a mechanical penthouse, at Valparaiso Street (down slope from Filbert Street).

The 940 Filbert Street site is in the North Beach neighborhood between Taylor and Jones Street on the north side of Russian Hill. The surrounding blocks and vicinity are predominately low-rise residential buildings. High-rise residential buildings are southwest near the crest of Russian Hill. Commercial uses are along Columbus Avenue two blocks to the east and along Hyde Street two blocks to the west.

The City College use at this site continues the previous public school use (when the building was occupied by the SFUSD). This site, a moderate-scale building, has housed an educational use since around 1900, and is part of a pattern of school use within residential areas found in many older parts of San Francisco. The alternative, consolidating the Chinatown/North Beach Campus sites from seven locations, would intensify the institutional use in a predominately residential area, compared to the mixed-use area around the Project Site. Compared to the mixed-use character of the Project Site at Kearny Street and Washington Street, changes with Alternative E would be considered to have an adverse impact on land use character at the Filbert Street site.

Section III.B, Visual Quality, found that the 244.5-foot-tall Project would be considered to have a significant adverse effect on the visual context of Columbo Building, a structure eligible for listing on the National Register, and on views from Portsmouth Square.

While this alternative would avoid the Project’s significant visual impact, it would have significant adverse visual impacts because the new 135-foot high 740 Filbert Street Building would be constructed in a low-rise residential neighborhood setting of Russian Hill. A 10-story mid-rise
building on this site would not be compatible with the characteristic of this area. The Planning Code height and bulk district for the site and vicinity is 40-X, or a 40-foot height limit.

The Project would introduce a high-rise building in the Chinatown neighborhood near an existing high-rise development in the Financial District. With Alternative E, the contrast to a 135- to 152-foot building at the Filbert Street site with the surrounding low-rise residential buildings would be considered to result in more substantial adverse visual effects compared to the Project.

The alternative would not be expected to cast new shadows on open space under the jurisdiction of the Recreation and Park Department, including Washington Square about three blocks east of 940 Filbert Street.

The 940 Filbert Street building was built prior to 1900 and could be considered to be a historic resource under CEQA. According to the Planning Department, although it has not been formally evaluated for its historic significance, given its age and style, it is possible that it would be found to be a significant historic resource. Reuse of the site for new construction would potentially be an adverse effect on an historic resource.5

Transportation effects for Alternative E would not be expected to adversely affect intersection conditions. 940 Filbert Street is served by MUNI lines 30 and 45 and the Hyde Street Cable Car. MUNI line 41 that operates only during the AM and PM rush hour also serves this site. This site is about 1.5 miles from the major transit services on Market Street and Mission Street, about a mile farther than the Project Site. While not considered a significant adverse effect, the on-street and off-street parking resources around the Filbert Street site are more limited than at the Project Site.

Alternative E would not avoid the temporary, short-term Project construction impacts (which would be less than significant after mitigation).

The soils at 940 Filbert are slope debris and ravine fill derived from the Franciscan shale and thin-bedded sandstone of Russian Hill. The materially generally can be excavated and compacted
easily with standard power equipment. Slope stability is good in dry weather, but very poor in wet weather. Seismic stability is moderate. Foundation support capacity would depend on the specific material at the site.\(^6\) The soil conditions of the underlying bedrock would likely require driven piles for foundation support. The excavation and pile-driving activities for this alternative would have short-term construction noise and air quality effects on the surrounding neighborhood. These effects would be limited with standard mitigation measures. Short-term construction effects would not be avoided, but would not be significant adverse effects under CEQA.

As with the Project, this alternative would be expected not to have significant adverse impacts on Geology and Soils, Hazards, Public Services, Utilities, Wind, Air Quality, and Noise. Unlike the Project, this alternative may have adverse impacts on Land Use and Zoning, Historic Resources, and Shadows.

Alternative E would accommodate the programs envisioned by the District. While the building would be designed to provide adequate disabled, pedestrian, and bicycle access, the relatively steep slope of Filbert Street would make it difficult for persons in wheelchairs and the elderly to access the site, compared to the Project site.

The District would not pursue this alternative at this time because of the site constraints presented by land use, visual quality, and parking conditions.

C. ENVIRONMENTALLY SUPERIOR ALTERNATIVE

An EIR is required to identify an environmentally superior alternative from among the range of reasonable alternatives that are evaluated. Section 15126.6(e) of the CEQA Guidelines requires that an environmentally superior alternative be designated and states that “if the environmentally superior alternative is the ‘no project’ alternative, the EIR shall also identify an environmentally superior alternative among the other alternatives”.

5 Mark Luellen, preservation Coordinator, San Francisco Planning Department, electronic correspondence with PBS&J, March 30, 2007.

From the alternatives evaluated for the Project, the environmentally superior alternative would be the No Project Alternative. This alternative would avoid all significant impacts associated with the Project. However, in accordance with the CEQA Guidelines, an environmentally superior alternative must also be selected from the remaining alternatives. Alternative A would avoid the significant unavoidable visual quality impact of the Project because two 65-foot-tall buildings would be constructed. However, Alternative A would not meet all of the program goals of the Project. As noted above, Alternative A could accommodate about 38,750 asf compared to the 83,325 asf for the Project, or about 45 percent of the entire program proposed for the Project.
VI. REPORT PREPARERS AND PERSONS CONSULTED

LEAD AGENCY

City College of San Francisco
33 Gough Street
San Francisco, CA 94102

Peter Goldstein, Vice Chancellor for Finance and Administration
James Blomquist, Associate Vice Chancellor
Joanne Low, Dean of Chinatown/ North Beach Campus

PROJECT ARCHITECTS

EHDD Architecture
500 Treat Avenue, Suite 201
San Francisco, CA 94110

Jennifer Devlin
Greta Jones
Richard Feldman
Ken Powelson

Barcelon & Jang
315 Bay Street, 3rd Floor
San Francisco, CA 94133

Wayne Barcelon
David Ng

PROJECT ATTORNEYS

Luce, Forward, Hamilton & Scripps LLP
121 Spear Street, Suite 200
San Francisco, CA 94105

Alice Suet Yee Barkley
Denis Shanagher

CONSULTANTS

EIP Associates, a Division of PBS&J
353 Sacramento St., Ste. 1000
San Francisco, CA 94111

Michael Rice
Aubrey Refuerzo
Melissa Duncan
Natalie Irwin
Jackie Ha
Kevin Tran

CHS Consulting Group
(Transportation)

Chi-Hsin Shao
Byung H. Lee
Janice Gendreau
VI. Report Preparers and Persons Consulted

Archeo-Tec
(Archaeological Resources)
Allen Pastron

CADP, Inc
(Shadows)
Adam Noble

Donald Ballanti, Certified Consulting Meteorologist
(Wind)
Donald Ballanti

Square One Productions
(Visual Simulations)
Hartmut H. Gerdes, AICP
Yon Resch
Angela Lin
Appendices
A. Notice of Preparation
NOTICE OF PREPARATION

TO: Responsible, Trustee Agencies, and Interested Parties

FROM: Peter Goldstein, San Francisco Community College District

DATE: October 6, 2006

RE: Notice of Preparation of a Subsequent Draft Environmental Impact Report

The San Francisco Community College District (SFCCD) is the Lead Agency and will prepare a Subsequent Environmental Impact Report for the project identified below.

State Clearinghouse No. 98031039: City College of San Francisco Chinatown/ North Beach Campus- A Draft EIR for a City College Chinatown / North Beach Campus was published on April 23, 1998. The 1998 EIR project included Lots 4, 5, and 12 in Assessor’s Block 195, in Chinatown in San Francisco. The 1998 EIR included plans for classrooms, laboratories, an auditorium, multi-purpose room, administration and faculty offices, a library, and a childcare center, and parking, totaling about 158,000 gross square feet. The Initial Study found that Agricultural Resources, Biological Resources, Energy, Hydrology, Mineral Resources, Noise, Public Services, Recreation, and Utilities and Service Systems would not require review in the EIR. The issues addressed in the EIR included Land Use and Zoning, Aesthetics, Historical and Architectural Resources, Transportation, Geology and Soils, and Hazards and Hazardous Materials.

The 1998 EIR was certified by the Community College District Board of Trustees, but the project was not implemented.

The SFCCD has revised its plans to construct a City College Chinatown / North Beach campus. The proposed project would be constructed on Lots 9 and 10 on the same block as the 1998 EIR, and includes similar uses as analyzed in the 1998 EIR. The proposed project includes a 17-story, 238-foot tall building at Washington and Kearny Street. The building would contain classrooms, offices, lounges, meeting rooms, a library, student center, and a multipurpose room with approximately 82,662 assigned square footage (assigned square footage includes only the space that has been allocated for a particular use and does not include accessory space, such as hallways and restrooms). The SFCCD will retain ownership of Lot 5 for possible future use. The SFCCD has sold Lots 4 and 12.

The SFCCD has determined that the revisions to the Chinatown / North Beach Campus project require the preparation of a Subsequent Environmental Impact Report (SEIR) under CEQA Guidelines Section 15162. The SEIR will cover the same topics as the 1998 EIR, and will also analyze with wind and shadow impacts.

The Notice of Preparation of a Draft SEIR for the above-referenced project is being sent to you because you have expressed an interest in the proposed project, or because you have been identified by the SFCCD as potentially having an interest in the project. We need to know the views of your agency as to the scope and content of the environmental information which is germane to your agency’s statutory responsibilities in connection with the proposed project. Your agency may need to use the SEIR when considering a permit or other approval for this project.

Written comments on the scope of the SEIR will be accepted until the close of business on November 6, 2006. Written comments should be sent to:

Peter A. Goldstein
Vice Chancellor for Finance and Administration
San Francisco Community College District
33 Gough Street
San Francisco, CA 94103

Please include the name of a contact person in your agency. Thank you.
B. Geology Glossary
GEOLOGY GLOSSARY

Bay Mud: A layered sequence of soft, plastic, expansive sediments forming the bottom of San Francisco Bay (often referred to as the “younger” Bay Mud), consisting of clay- and silt-sized particles interspersed with stringers and pockets of peat, fine sand, and minor amounts of gravel, and having a water content ranging between 30 and 92 percent (commonly 50 to 60 percent in the uppermost 50 to 100 feet of the deposit).

Characteristic Earthquake: The “moment magnitude” (see below) of the seismic event considered representative of a particular fault segment, based on seismological observations and statistical analysis of the probability that a larger earthquake would not be generated during a given time frame. In the Bay Area, the characteristic earthquake for the Peninsula segment of the San Andreas Fault has a moment magnitude (Mw) of 7.1; the entire Hayward fault, a Mw of 7.3; and the northern segment of the Calaveras fault, Mw 6.9. The term “characteristic earthquake” replaces the term “maximum credible earthquake” (see below) as a more reliable descriptor of future fault activity.

Horizontal Ground Acceleration: The rate of speed at which soil or rock materials are displaced by seismic waves. It is measured as a percentage of the acceleration of gravity (0.5g = 50 percent of 32 feet per second squared, expressed as a horizontal force). Peak horizontal ground acceleration is the maximum acceleration expected from the characteristic earthquake predicted to affect a given area. Repeatable acceleration refers to the acceleration resulting from multiple seismic shocks. Sustained acceleration refers to the acceleration produced by continuous seismic shaking from a single, long-duration event.

Liquefaction: A response to severe ground shaking that can occur in loose soils. This transformation from a solid state to a liquid state (“quicksand”), as a response to seismically induced ground shaking, can cause ground settling and landsliding. Earthquake-induced liquefaction does not affect bedrock; however, it does affect certain types of alluvium and artificial fill under conditions of saturation. The characteristics of a liquefaction-prone deposit include: (1) uniformly fine sand or sandy soil; (2) saturated conditions—usually by groundwater; (3) loose to moderately dense compaction; and (4) little or no clay-sized particles to act as binders. If these conditions occur within about 30 to 40 feet below the ground surface, vibration sufficiently violent to increase pore pressure beyond the shear strength of the sand particles could cause such soils to liquefy. Any structures supported on the soils would be subject to tilting or settlement (sometimes very violent and rapid) as the supporting capabilities of the liquefying soil diminished.

Maximum Credible Earthquake (MCE): The largest Richter magnitude (M) seismic event that appears reasonably likely to occur under the conditions of the presently known geological framework. This term has been replaced by “characteristic earthquake,” which is considered a better indicator of probable seismic activity on a given fault segment within a specific time frame.

Modified Mercalli Intensity (MMI) Scale: A 12-point scale of earthquake intensity based on local effects experienced by people, structures, and earth materials. Each succeeding step on the scale describes a progressively greater amount of damage at a given point of observation. Effects range from those which are detectable only by seismicity recording instruments (I) to total destruction (XII). Most people will feel Intensity IV ground motion indoors and Intensity V outside. Intensity VII frightens most people, and Intensity VIII causes alarm approaching panic. The physical effects of Intensity VIII ground shaking are general damage to ordinarily substantial buildings, including partial
collapse; some damage to specially designed structures; twisting or fall of chimneys, factory stacks, towers, and unreinforced masonry walls; movement of frame houses on their foundations, if they are not bolted in place; breaking of tree limbs and decayed timber pilings; and cracking of wet ground. The physical effects of Intensity IX ground shaking are considerable damage to specially designed structures; great damage to ordinarily substantial buildings, including partial collapse; destruction of poorly built structures; and liquefaction, settlement, and ground cracking of fill and other saturated fine sandy deposits. The scale was developed in 1902 by Giuseppi Mercalli for European conditions, adapted in 1931 by American seismologists Harry Wood and Frank Neumann for conditions in North America, and modified in 1958 by Dr. Charles F. Richter to accommodate modern structural design features.

Moment Magnitude (Mw): A logarithmic scale used by modern seismologists to measure the amount of energy released by an earthquake. For the purposes of describing this energy release (i.e., the “size” of the earthquake on a particular fault segment for which seismic-resistant construction must be designed), the moment magnitude (Mw) of the characteristic earthquake for that segment has replaced the concept of a maximum credible earthquake of a particular Richter magnitude. This replacement became necessary because the Richter scale “saturates” at the higher magnitudes; that is, the Richter scale has difficulty differentiating the size of earthquakes above M 7.5. The Mw scale is proportional to the area of the fault surface that shifts (slips) during an earthquake and, thus, is directly related to the length of the rupture. It reflects the amount of “work” (in the sense of classical physics) done by the earthquake. Although the numbers of the Mw scale may appear lower than those of the traditional Richter magnitudes, they convey more precise (and more useable) information to geologic and structural engineers.

Richter Magnitude Scale: A logarithmic scale developed in 1935 to 1936 by Dr. Charles F. Richter and Dr. Beno Gutenberg to measure earthquake magnitude (M) by the amount of energy released, as opposed to earthquake intensity as determined by local effects on people, structures, and earth materials (for a description of these effects, see Modified Mercalli Intensity Scale). Each whole number on the Richter scale represents a 10-fold increase in amplitude of the waves recorded on a seismogram and about a 31-fold increase in the amount of energy released by the earthquake. Because the Richter scale tends to saturate above about M 7.5, it is being replaced in modern seismological investigations by the moment magnitude (Mw) scale (see above).

San Francisco City Datum: For surveying purposes in San Francisco, a local datum was established, in the 19th century, at 8.66 feet above mean sea level, approximately high tide at the time.

Seismic Hazard Zones: In 1991 the State of California began delineating Seismic Hazard Zones in areas of the State where local geological, geotechnical, slope, or groundwater conditions indicate a potential for permanent ground displacements caused by earthquake vibrations such that mitigation as defined in Public Resources Code Section 2693(c) would be required. The zones are revised as new information becomes available. No structure for human occupancy, with the exception of single-family wood-frame or steel-frame dwellings not exceeding two stories in height and not part of a development of four or more dwellings, may be issued a building permit within a Seismic Hazard Zone until a geotechnical evaluation of the project site is conducted and appropriate mitigation measures are incorporated in the project plans. Liquefaction Hazard Zones have been delineated for San Francisco based on areas where liquefaction has occurred historically, and where local geological, geotechnical, and groundwater conditions indicate the likelihood of permanent ground displacement caused by earthquake-induced liquefaction.