This section contains design guidelines for the Ocean Avenue Campus of CCSF. This campus will see a significant amount of construction in the next 10 years. Attention to the character and quality of building and grounds improvements can lead to a significantly more attractive and functional campus, and one that conveys a special identity for CCSF. As the largest campus of the CCSF system, and the location for the largest numbers of classes and student enrollment, the Ocean Avenue Campus is the flagship site. As such it can convey CCSF’s commitment to educating students in a welcoming and comforting environment, one appropriate to this important institution.

The guidelines that follow include:

Rural Design Guidelines: These guidelines address the arrangement of buildings and the spaces between them. Urban design guidelines set the general appearance of the campus, and define the quality of spaces and connections between spaces through which students, faculty and staff pass during the day.

Architecture Guidelines: The general configuration and character of buildings is described in the architecture guidelines. These are intended to identify critical elements while allowing considerable flexibility for future building designers.

Landscape Design Guidelines: Landscape guidelines describe the desired character of the open space environment, with consideration of plantings, furnishings, and other elements in the outdoor environment of the campus.

Sustainable Planning and Design Guidelines: The campus intends to pursue the practice of sustainable planning and design in new buildings, infrastructure and planning. Included in this section is a general description of LEED design criteria. Developed by the U.S. Green Building Council, these criteria represent a concise and clear articulation of many of the elements of sustainable design. They will be guide the campus in the development of upcoming facilities and campus development projects.
Urban Design Guidelines

Site design and overall campus improvement strategies for the Ocean Avenue Campus are illustrated on the following pages. These urban design guidelines address:

- the arrangements of buildings,
- relationships between buildings and open space
- the location and configuration of pedestrian entries and major circulation corridors
- alignments of service and vehicular access.

These guidelines establish overall patterns of development on the campus, and call out critical issues to be considered in the more detailed design of buildings and spaces in coming years.

South Gate/Wellness Center Area

This area is a primary pedestrian entry to campus for students and others traveling via BART and MUNI. Completion of the new Wellness Center will allow new pedestrian connections into campus from Ocean Avenue. Of critical importance will be the pedestrian connection from the Wellness Center up the hill to Cloud Circle and most major academic and student services destinations. As a community facility, the Wellness Center will provide a welcoming new “front door” for the campus.
Cloud Circle/Ram Plaza Area

The area of Cloud Circle directly adjoining Ram Plaza currently functions as the most active gathering area on campus due to its adjacency to food service and because it is partially sheltered from frequent cold westerly winds. The campus will be considering significant improvements to the adjoining buildings: Conlan Hall, Smith Hall and the Statler Wing, as well as renovations of the Student Union. This complex should be designed to provide generous sheltered open space, furnished to allow a variety of casual uses. Ram Plaza, the signature plaza, should be improved to provide more seating areas and a higher degree of finish and materials. These improvements should be coordinated with the renovation of Cloud Circle. Most parking will be removed from the circle, eliminating vehicular/pedestrian conflicts and allowing it to become the pedestrian “main street” of campus. Special paving, lighting, signage, and furnishings can make Cloud Circle a distinctive, memorable and functional pedestrian pathway. The connection up the hill to Science and Cloud Halls can also be improved with new stairs, lighting and landscaping to provide a more welcoming transition to the highest campus elevation.
Performing Arts Area

The Performing Arts complex will be the first campus building constructed west of Phelan Avenue. With proximity to Ocean and Phelan Avenues, the center will be readily accessible by the larger San Francisco community. Improved connections to public transit and improved pedestrian safety shall ensue ease of circulation. MUNI bus movements will be reconfigured at the Phelan Loop to free up space for a new plaza, a community asset and gateway to the campus and Performing Arts. Performing Arts buildings area will be clustered to provide wind-protected outdoor plaza space. The plaza will connect directly to Cloud Circle, the primary pedestrian mall of the campus, linking virtually all campus academic buildings. Improvements to Phelan Avenue will include a signalized intersection, pedestrian crosswalks, traffic calming elements, a widened sidewalk on the west side and intensive new landscaping.
Campus Quad Area

A new campus quad will be provided directly opposite the formally sited and designed Science Hall, the original building on the Ocean Avenue Campus. Designed to be protected from sometimes harsh westerly winds, the quad will provide a venue for special events and gatherings. It will be bordered along Phelan Avenue by Phelan Walk, which will include widened sidewalks and landscaping along the reservoir sites, improving the appearance of Phelan Avenue and providing an improved pedestrian environment. As described elsewhere, traffic will be mitigated along Phelan Avenue with traffic calming, signalized intersections, and improved pedestrian crosswalks will also be provided.
North Gate/Creative Arts Area
This area of campus will receive several small new facilities including the Student Health Center and Childcare Center. Both small buildings, they will be sited near the intersection of Judson and Phelan Avenues, with easy vehicular accessibility that will minimally impact the surrounding neighborhoods. Parking in this area will be reconfigured to allow drop-off for the childcare center. When the Performing Arts complex is completed, some uses from the existing Creative Arts building will be relocated, allowing for the renovation of this building into the Center for Pan American Unity and classrooms. The Diego Riviera mural may be repositioned from its current location in the theater to a more public and visible gallery location.
Architecture Guidelines

Architecture

Goal: To create a framework that establishes an overall sense of architectural cohesiveness on campus while still allowing for diversity in design.

The architectural design guidelines for the Ocean Avenue Campus should establish a consistent sense of style that articulates a single design vision for the campus. Although a building may define a particular period of design, the campus architectural tradition should stand above individual building form. Through coordination of design, the use of these guidelines should achieve a visually attractive design while respecting the prevailing architectural character of the campus.

Building Form and Massing
A building’s form and massing are important in establishing how it will fit into the overall campus setting. A strong, simplified massing that enhances pedestrian scale will strengthen the connection between the building and the public realm. Development of building courtyards can reinforce a building’s pedestrian orientation and can also provide a coherent transition between main pathways and academic facilities

- Respect the proportions and scale of existing buildings.
- Break larger building masses into several, smaller volumes to enhance human scale.
- Site buildings along an orthogonal orientation to fit into the campus’ overall urban setting.
- Use a building’s mass to block wind gusts from the west, where possible.
- Create courtyards on leeward sides of the wind to avoid exposure.

- Use the building site topography to accentuate and enhance the overall building form.
- Develop buildings of a three to four story height to conserve open space and to encourage sustainability.
Façade Articulation and Fenestration
Articulation of façade and fenestration can improve the visual qualities of a building and can engage pedestrian visual interest.

– Avoid large horizontal patterns and elements, such as in Cloud Hall or in the lower portion of the Library, which can accentuate building mass.
– Break up larger building massing with smaller vertical elements.
– Use durable sun shading devices that are easily maintainable.
– Design well-recessed window opening and changes in depth of exterior walls to delineate building form through the use of shadow and light.

Building Entry
An entryway should contribute to campus wayfinding by clearly identifying points of building access.

– Site all main building entries at the Cloud Circle/Phelan Avenue level or from the Main Entry Path.
– Provide large, inviting building entrances that are easily identifiable from major pedestrian pathways.
– Recess entryways to protect from the elements and to allow for good pedestrian flow.
Roof
Consistency in roof forms will provide continuity of building forms and massing regardless of individual architectural style.

- Design all new building facilities with either a flat or low-pitched roof.
- Enclose all rooftop mechanical equipment in a penthouse to shield it from public view.
- Create pleasing roofscape elements that may be viewed from neighboring floors above.
- Encourage the development of habitable roof spaces.
- Incorporate solar panels as appropriate.
- Integrate exhaust and plumbing stacks as architectural design features. Where applicable, employ articulation to reduce larger scale elements.

Building Service Areas
While building service areas are a necessary building function, it is important to site these spaces in a manner that is unobtrusive.

- Locate all building service areas away from major pedestrian walkways.
- Shelter all service areas with either fencing or a landscaping screen.
Building Signage

Building signage should provide clear identification at all main entries from the Cloud Circle level or main approach.

- Use the exterior wall as a backdrop for building signage.
- Use a simple, consistent set of fonts and dark colors for all building signage, such as the Science Building signage.
- Integrate site signage into landscape elements with the only exceptions being signage at the main campus entries.
Materials and Colors

Goal: To develop a palette of consistent building materials and colors that will encourage new buildings to relate to the campus’ existing historic buildings.

The single palette of building materials and colors, established from the prevailing, historic architectural character, is a simple way of creating architectural unity and balance.

Materials

Building materials should be visually compatible with the existing character of the Ocean Avenue campus. Selected materials should achieve a balance with building form, massing, scale and color. Materials should have qualities of durability and permanence.

- Select clear window glazing. Dark tint and reflective glazing are discouraged.
- Use opaque spandrel glass, where appropriate, to conceal storage areas with visible clutter from public view.
- Use smooth building elements that have ease of maintenance.

Colors

The color palette should fall within the range of beige tones, such as tan, ochre and buff, which already exist on the Ocean Avenue Campus. The historic building color scheme, with its lighter tones, creates a sense of warmth even when set against graying skies.

- Use consistent colors for visible part of the buildings as viewed from on- and off-campus.
- Employ window frames with a dark or warm hue, such as tan or brown, to coordinate with building colors.
- Allow for a special color treatment in areas not visible from the exterior, such as in building courtyards.
Public Art

Goal: To incorporate public art elements as architectural features that can add additional touches of distinction and can stimulate pedestrian visual interest.

Public art can play an important role in shaping the quality of campus life. Art can encourage a climate for creative thinking amongst the campus community. The Ocean Avenue campus has a strong art heritage as demonstrated through the presence of several artistic icons, including the Diego Rivera mural and the Science Building.

- Incorporate appropriately-scaled art into building detailing.
- Use public art to diminish impacts of a blank building façade at a pedestrian level.
- Locate public art elements in open spaces to create focal points.
- Frame murals and relief sculptures behind architectural elements such as colonnades and entrance porches.
- Enliven courtyards with artwork.
- Integrate artwork with architectural design.
Landscape Design Guidelines

Planting

Lower Campus and Campus Parameter on North and East

The lower campus takes on the most natural character on the site. All attempts should be made to minimize the use of lawn and high water use plant types, and to make natural transitions to adjoining properties and uses. Trees and screening elements should be used in mass, to create a simple, unified character to the site.

The general criteria for plant selection are:

- Buffer and Woodland Concept
- Tolerance of Poor/Saline Soils
- Wind Tolerance
- Drought Resistance
- Low Maintenance

Botanical Name	**Common Name**
Trees
Cercis spp. | Redbud
Celtis occidentalis | Western Hackberry
Pinus pinea | Italian Stone Pine
Populus fremontil (male) | Fremont Cottonwood
Schinus molle | California Pepper

Shrubs / Groundcover

Atriplex canescens | Four Wing Salt Bush
Baccaris pilularis | Twin Peak
Gazania spp. | Gazanla
Festuca | Fescue
Rhus integrifolia | Lemonade Berry

Example of Natural character appropriate for the lower campus.

Example of more well-defined natural area suitable to the upper campus.
The Upper Developed Portion of Campus
The upper campus should have a consistent vocabulary of materials and treatment. Paving and planting take a distinct architectural and geometric approach giving both a common setting for the buildings and a distinct formal structure to the space. The upper campus areas create both a strong image for CCSF and provide gathering spaces for student, facility, and employees to meet, walk, lunch, play and rest.

The general criteria for plant selection are:
- Formal Structure
- Wind Tolerance
- Drought Resistance
- Saline Tolerance

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td></td>
</tr>
<tr>
<td>Acacia baileyana</td>
<td>Acacia</td>
</tr>
<tr>
<td>Celtis occidentalis</td>
<td>Western Hackberry</td>
</tr>
<tr>
<td>Pinus pinea</td>
<td>Italian Stone Pine</td>
</tr>
<tr>
<td>Populus fremontii (male)</td>
<td>Fremont Cottonwood</td>
</tr>
<tr>
<td>Schinus molle</td>
<td>California Pepper</td>
</tr>
<tr>
<td>Tristania conferta</td>
<td>Brisbane Box</td>
</tr>
<tr>
<td>Shrubs / Groundcover</td>
<td></td>
</tr>
<tr>
<td>Atriplex canescens</td>
<td>Four Wing Salt Bush</td>
</tr>
<tr>
<td>Baccarhis pilularis</td>
<td>Twin Peak</td>
</tr>
<tr>
<td>Gazania spp.</td>
<td>Gazanla</td>
</tr>
<tr>
<td>Festuca</td>
<td>Fescue</td>
</tr>
<tr>
<td>Myrsine africanum</td>
<td>African Box</td>
</tr>
<tr>
<td>Raphiotepis spp</td>
<td>Hawthorn</td>
</tr>
<tr>
<td>Rhododendron spp</td>
<td>Rhododendron</td>
</tr>
<tr>
<td>Rhus integrifolia</td>
<td>Lemonade Berry</td>
</tr>
<tr>
<td>Lawn</td>
<td></td>
</tr>
<tr>
<td>Marathon Fescue</td>
<td>Fescue</td>
</tr>
</tbody>
</table>
Fences, Walls, and Gates

Campus gateways play a critical role in both defining the character and defining the boundaries for the campus.

- Gateways are effective architectural tools, which can provide identity, scale and a sense of place for the day users and neighbors of the facility. All gateways should consider lighting, circulation, topography, planting and signage as a singular, unified expression of the campus itself.

- When fences are used, a combination of 30" high walls with 42" high pickets is encouraged as a way to enhance the view out and to create a more transparent view into the site.

Paving

Paving is developed around the hierarchy of the Open Space Plan, leaving the exterior, lower campus paving more natural and the interior, Upper Campus paving more architectural.

The general criteria for paving selection is:

The Lower Campus
- Natural, porous material.
- Decomposed granite at pathways.
- Unit pavers at plaza areas.

The Middle Campus
- Colored and finished concrete to match existing conditions where they meet.
- Use of higher quality, unifying materials for major circulation paths.
- Use of special, unit paving at all niche and plaza areas.
- Wherever possible, pedestrian paving should be more visually interesting than vehicular paving.

The Upper Campus
- High quality unit pavers.
- On Phelan Avenue and Cloud Circle, use a single, unified pavement type.
- In pedestrian areas, use architectural paving adjacent to buildings to enhance indoor/outdoor relationship.
Grading
Grading should complement and reinforce the overall architectural and design character.

The Lower Campus
A natural transition between existing site conditions and the proposed buildings is important on the lower campus. All efforts should be made to enhance the existing topography of the campus.

The Middle Campus
On the middle campus, mass grading should be used to define architectural landscape spaces and screen undesirable ones.

The Upper Campus
The upper campus should be a unified space. Use of trench drains are encouraged to keep site lines and straight walkways flat.

Soil preparation
Special attention should be paid to proper soil preparation before plant installation. Site soils are poorly drained and have generally high sodium and boron levels, which are detrimental to healthy plant growth. The initial cost of special, site-specific soil treatment and drainage measures will be repaid in a more attractive, healthy and sustainable landscape in the years to come.

Landscape Water Use and Conservation Guidelines
- Landscape design and practices and related requirements necessary to achieve water conservation.
- All ornamental uses of water in the common areas of the project shall be supplied with alternative sources of water if they are available and operated with recycled/recirculating water.

Planting Design
The majority of the plants selected should be well suited to the climate of the region and require minimal water.

Irrigation
All landscaped areas will be provided with automatically controlled water-conserving irrigation systems. The irrigation systems design guidelines are:

Low: Wooded / Buffers
Bubbler irrigation at trees and major screening shrubs only.

Moderate: Groundcovers / Gardens
Drip emitters systems at all planting.

High: Lawn areas
Combination spray and bubbler for trees. Limit use to pedestrian intensive areas only.
Maintenance
- All workers shall be under the supervision of an experienced maintenance supervisor.
- All work is to be performed in accordance with standard horticultural practices, using modern techniques accepted by the industry. The appearance and health of the landscapes shall be considered over methods and procedures.
- All work shall be scheduled to assure that horticultural tasks are completed at the proper times. Schedules may vary throughout the year as weather conditions dictate.
- Contractors shall replace or repair anything damaged by his employees or agents.

Site Lighting
Lighting is important for functional and aesthetic purposes.

The Lower Campus
Every attempt should be made to improve the light quality level already existing without increasing off-site light impact to adjoining properties.

Utilize pedestrian level bollards and/or pole lights. Lamping should be consistent with the adjoining properties.

The Middle Campus
This has the unique challenge of balancing vehicular, pedestrian and accent lighting.

- Vehicular/pedestrian lighting per City standards.
- Accent lighting at:
 - Gateways / major pedestrian circulation routes
 - Special architectural features
 - All plaza / niche spaces

The Upper Campus
The upper campus should maintain a simple uniform level of high quality pedestrian/vehicular lighting.

- Utilize low 12’-15’ pole lights throughout
- Accent all building entries
- Unify Phelan Avenue/Cloud Circle with high quality pedestrian level lighting
Site Furnishings
Quality site furnishings are critical for functional and aesthetic purposes. Seating is particularly important in scaling down the larger context and creating habitable places for people to linger.

Lower Campus
- Consistent with existing adjacent uses
- External, regional orientation
- Variety (large/small) of uses.
- Close to Transit Stops
- At gateways and major circulation routes

The Middle Campus
- Close to transit stops
- Focus on smaller niche, plaza and garden spaces
- Internal Orientation

The Upper Campus
- High quality with relationship to building in architectural style
- Unique to CCSF
- Internal orientation
- Major, consistent, emphasis on Phelan and Cloud Circle
 - Benches/seating throughout
 - High quality lighting and street furnishings
 - Use elements which unify diverse architectural styles
Sustainable Planning and Design Guidelines

LEED™ Green Building Rating System

City College of San Francisco is interested in utilizing the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED™) green building rating system as a way to prioritize the sustainable building planning and design strategies for the campus. LEED™ is a self-assessing system designed for rating new and existing commercial, institutional, and high-rise residential buildings. It evaluates environmental performance from a “whole building” perspective over a building’s life cycle, providing a definitive standard for what constitutes a green building. LEED is based on accepted energy and environmental principles and strikes a balance between known effective practices and emerging concepts.

There are two relevant LEED Programs: LEED V2.1 for new buildings, major renovations, and high-rise multi-family housing; and LEED EB for existing buildings, which is currently in a Pilot Phase. Below are elements of sustainable planning, design, and construction that can be considered in long-term planning for City College:

LEED™ Version 2.1 (for New Construction and Major Renovations)

Campus Environment/Site Planning

- Erosion and sedimentation control — Control erosion to reduce negative impacts on water and air quality.

- Reduced site disturbance — Conserve existing natural resources and restore damaged areas to provide habitat and promote biodiversity.

- Stormwater management — Limit disruption of natural water flows by minimizing storm water runoff, increasing on-site infiltration and reducing contaminants.

- Alternative transportation — Reduce the pollution and land development impacts from automobile use by installing alternative fuel-refueling stations and supporting mass transit.

- Landscape and exterior design to reduce heat island effect — Reduce heat islands (thermal gradient differences between developed and undeveloped areas) to minimize impact on microclimate and human and wildlife habitat.

- Light pollution reduction — Eliminate light trespass from the building site, improve night sky access, and reduce development impact on nocturnal environments.
Water
- Water efficient landscaping—Limit or eliminate the use of potable water for landscape irrigation.
- Innovative wastewater technologies—Reduce generation of wastewater and potable water demand, while increasing local aquifer recharge.
- Water use reduction—Maximize water efficiency within buildings to reduce the burden on municipal water supply and wastewater systems.

Energy and Atmosphere
- Building systems commissioning—Verify and ensure that the building is designed, installed, and calibrated to operate as intended.
- CFC reduction in HVAC&R equipment—Reduce ozone depletion.
- Optimization of energy performance—Achieve increasing levels of energy performance above the prerequisite standard to reduce environmental impacts associated with excessive energy use. Achieving energy use 20% below Title 24 should be possible for most buildings.
- Renewable energy sources—Encourage and recognize increasing levels of self-supply through renewable technologies to reduce environmental impacts associated with fossil fuel energy use.
- Elimination of HCFCs and Halons in HVAC/refrigeration/fire suppression equipment—Reduce ozone depletion and support early compliance with the Montreal Protocol.
- Measurement and Verification—Provide for the ongoing accountability and optimization of building energy, water consumption over time.
- Green power—Encourage the development and use of grid-source, renewable energy technologies by purchasing Green Tags/Certificates.
Materials and Resources

- Storage and collection of recyclables—Facilitate the reduction of water generated by building occupants that is hauled to and disposed of in landfills.

- Construction waste management—Divert construction, demolition, and land clearing debris from landfill disposal. Redirect recyclable material back to the manufacturing process.

- Resource reuse—Extend the life-cycle of targeted building materials, reducing environmental impacts related to materials manufacturing and transport.

- Recycled content—Increase demand for building products that have incorporated recycled content material, reducing impacts resulting from the extraction of new material.

- Local/regional materials—Increase demand for building products that are manufactured locally, reducing the environmental impacts resulting from transportation, and supporting the local economy.

- Rapidly renewable materials—Reduce the use and depletion of finite raw and long cycle renewable materials by replacing them with rapidly renewable materials (planted and harvested in less than a ten year cycle).

- Certified wood—Encourage environmentally responsible forest management.

Indoor Environmental Quality

- Minimum Indoor Air Quality (IAQ) performance—Establish minimum IAQ performance to prevent the development of indoor air quality problems in a buildings, maintaining the health and well being of the occupants.

- Carbon dioxide monitoring—Provide capacity for IAQ monitoring to sustain long-term occupant health and comfort. Use CO2 control for variable occupancy rooms such as classrooms and auditoriums.

- Increased ventilation effectiveness—Provide for the effective delivery and mixing of fresh air to building occupants to support their health, safety and comfort.
– Construction IAQ management—Prevent IAQ problems resulting from the constructive renovation process, to sustain long-term installer and occupant health and comfort.

– Low-emitting materials—Reduce the quantity of indoor air contaminants that are odorous or potentially irritating to provide installed and occupant health and comfort.

– Indoor chemical and pollutant source controls—Avoid exposure of building occupants to potentially hazardous chemical that adversely impact air quality.

– Controllability of systems—Provide a high level of individual occupant comfort of thermal, ventilation, and lighting systems to support optimum health, productivity, and comfort conditions.

– Thermal comfort—Provide for a thermally comfortable environment that support the productive and healthy performance of the building occupants. Use Adaptive Thermal Comfort standards for naturally ventilated spaces.

– Daylight and views—Provide a connection between the indoor spaces and the outdoor environment through the introduction of sunlight and views into the occupied areas of the building.

LEED-EB™ (Existing Buildings)

The LEED Green Building Rating System for Existing Buildings is a set of performance standards for the sustainable operation of existing buildings. The LEED-EB criteria cover building operations and systems upgrades in existing buildings where the majority of interior or exterior surfaces remain unchanged.

The LEED Rating System for Existing Buildings addresses:

– whole-building cleaning and maintenance issues including chemical use
– ongoing indoor air quality
– energy efficiency
– water efficiency

– recycling programs and facilities
– exterior maintenance programs, and
– systems upgrades to meet green building energy, water, IAQ, and lighting performance standards

LEED-EB is designed to complement the LEED Green Building Rating System, Version 2.1 for new construction and major renovations. LEED-EB is applicable to existing buildings that are seeking LEED certification for the first time as well as projects previously certified under LEED standards for new construction. LEED-EB provides the opportunity for building owners and operators to meet their sustainable operations goals and to reduce the impacts of their buildings on the environment and occupant health over their entire life cycle.

In preparation for the public launch of LEED-EB, the USGBC is currently conducting a pilot test of the rating criteria on a few sample of projects. LEED-EB should be available for use in Summer 2003.
ACKNOWLEDGEMENTS

City College of San Francisco
Philip Day, Chancellor
Peter Goldstein, Vice Chancellor (Finance & Administration)
David Liggett, Director (Facilities Planning & Construction)
Tobin Kendrick, Associate Director (Facilities Planning & Construction)
James Blomquist, Project Management Consultant

Skidmore, Owings & Merrill LLP
Urban Design & Master Planning:
– John Kriken, Planning Partner
– Ellen Lou, Project Director
– Jack Parker, Project Manager
– Ganesh Ramachandran, Principal Planner

Graphics & Signage:
– Lonny Israel, Director
– Erin O’Reilly, Senior Designer
– Brad Thomas, Senior Designer

BMS Design Group
– Barbara Maloney, Principal
– Tim Hurley, Senior Planner

Levy Design Partners
– Pamela Collier, Principal
– Letrice Sherrillo, Project Manager
– Emi Aoyagi

Fehr & Peers
– Jerry Walters, P.E., Principal
– Colin Burgett, Project Manager
– Jay Stagi, Transportation Planner
– Phyllis Chan, Graphics

The SWA Group
– Dan Tuttle, Principal
– René Bihan, Principal
– Suvarna Apte Dalvie, Project Landscape Architect
– Paul Stevenson, Project Landscape Architect

Kennedy / Jenks Consultants
– Fred C. Neal, Mgr. Civil Infrastructure Group
– Zachary D. Harris, Senior Mechanical Engineer
– Tony I. Wakim, Senior Electrical Engineer

Arup
– Alisdair McGregor, Principal

Simon & Associates, Green Building / Planning Consultants
– Lynn N. Simon, President
– Miriam Landman, Senior Associate

Davis Langdon Adamson
– Martin Gordon, Principal

Book Design: Sonia Chia Ballesteros, Sonia Ballesteros, Graphic Designer
Renderings: Philip Ishimaru