4.3 TRANSPORTATION AND CIRCULATION

A. SUMMARY

At least some of the projected increase in enrollment at the Main Campus would occur regardless of whether the Master Plan is approved; to take a conservative approach, this EIR assumes that all of the enrollment increase would be attributable to the proposed project. In 2006/2007 (the year chosen for analysis of near-term development), there would be an additional 389 vehicle trips during the weekday PM peak hour; in 2015/2016, there would be an additional 1,055 vehicle trips during the PM peak hour. Although conditions at some study intersections would worsen with the project in the near term and long term, the project effects would not be significant. The project and cumulative development would cause significant impacts at three study intersections: Phelan Avenue and Ocean Avenue, I-280 Northbound On and Off-ramps and Geneva Avenue, and I-280 Southbound On and Off-ramp and Geneva Avenue. This EIR identifies feasible improvements for all three of these intersections (as well as implementation of the College TDM program), but the measures would be under the purview of other agencies, and implementation cannot be assumed at this time. Therefore, the cumulative traffic impacts at these intersections would be significant.

Projected enrollment would add trips to transit lines in the campus vicinity, but the impacts would not be significant. There would continue to be a parking shortfall on the campus, even with the additional parking proposed as part of the project. Although the shortfall could lead to additional parking “spillover” in the adjacent neighborhoods, the lack of parking is not considered a significant impact and could actually help to encourage students and employees to use other modes of transport.

Pedestrian, bicycle, loading, freeway, and construction impacts of the proposed project would be less than significant. Campus access and circulation impacts could be significant in two ways: (1) the increased use of Havelock to access the proposed eastern parking garage could lead to hazardous conditions on that narrow road; and (2) the use of one access to parking west of Phelan Avenue (assuming that Lee Avenue is not extended) could lead to traffic back-ups on that roadway. A number of mitigation measures are identified to address these impacts, but there are uncertainties related to most of the measures. Therefore, the access and circulation impacts would remain significant.

B. INTRODUCTION

This section discusses potential project effects related to transportation and circulation, including intersection operations, transit demand, and impacts on pedestrian circulation, parking, bicycles, and freight loading, as well as construction impacts. The discussion summarizes the following study: “Draft Report, “Traffic Impact Study for the City College of San Francisco – Ocean Avenue Campus,” DKS Associates, January 30, 2004. The DKS Associates report is on file and available for review at the CCSF Administrative Offices, 33 Gough Street, San Francisco, during normal business hours.
C. SETTING

C1. Roadway Network

The regional and local roadway networks in the project vicinity are shown on Figure 4.3-1, Study Area.

Regional Access

Interstate 280: Interstate 280 (I-280) provides the primary regional access to the City College of San Francisco Ocean Avenue campus. I-280 extends from the South Beach area in San Francisco to eventually merge with US 101 in San Jose. This road serves the communities along the Peninsula including San Francisco County, San Mateo County and parts of Santa Clara County. There are I-280 northbound and southbound on and off-ramps along Ocean Avenue east of the Campus.

Local Access

This section describes the streets around the Campus location. Most streets around the Campus are classified as collector streets.1 There are two exceptions to this roadway classification: Ocean Avenue and Monterey Boulevard.

Ocean Avenue: Ocean Avenue is perpendicular to Phelan Avenue. According to the City of San Francisco General Plan: Transportation Element, Ocean Avenue is designated as a Major Arterial defined as:

“Cross-town thoroughfares whose primary function is to link districts within the city and to distribute traffic from and to the freeways; these are routes generally of citywide significance; of varying capacity depending on the travel demand for the specific direction and adjacent land uses.”2

East of I-280, Ocean Avenue has two lanes in each direction, with dedicated MUNI light rail along the street. Parking is only provided on the Balboa Park side of the street. West of I-280, Ocean Avenue has two lanes in each direction with the dedicated transit line in the middle of the street.

Monterey Boulevard: Monterey Boulevard runs east-west approximately four blocks north of the campus. According to the City of San Francisco General Plan: Transportation Element, Monterey Boulevard has a street classification of Secondary Arterial defined as: “Primarily intra-district routes of varying capacity serving as collectors for the major thoroughfares; in some cases supplemental to the major

2 Ibid.
arterial system.\footnote{Ibid.} In the vicinity of the study area, Monterey Boulevard has two lanes in each direction, with parking provided on both sides of the street.

Other streets: Other streets surrounding the campus are not classified in the City of San Francisco General Plan: Transportation Element and are considered local or collector streets. These other streets that surround the campus include: Phelan Avenue, Judson Avenue, Gennessee Street, Foerster Street, Edna Street, Detroit Street, Marston Avenue, Havelock Street, Howth Street, Geneva Avenue and Phelan Loop.

Phelan Avenue runs north-south between Flood Avenue and Ocean Avenue. Alongside the campus this street has two traffic lanes with no parking provisions. This street provides the main western access to both the campus and the reservoir parking. North of the campus this street has one traffic lane in each direction with parking on both sides of the street.

Judson Avenue runs east-west along the northern edge of the campus, between Phelan Avenue and San Jose Avenue on the eastern side of I-280. It has one traffic lane in both directions with parking on both sides.

Gennessee Street runs north-south between Judson Avenue and Mangels Avenue, which is north of Monterey Boulevard. It has one traffic lane in both directions and one parking lane on both sides of the street.

In the study area, *Foerster Street* runs north-south from Judson Avenue to Mangels Avenue, north of Monterey Boulevard. At this intersection, Foerster Street loops around to meet Teresita Avenue. In the study area, it has one traffic lane in each direction and one lane of parking on each side.

Edna Street runs north-south between Havelock Street and Monterey Boulevard. With one lane of parking on each side, the street has one traffic lane in each direction.

Detroit Street also runs north-south through the study area. It also has one traffic lane in each direction with parking on each side of the street. It runs from Judson Avenue to the north of Mangels Avenue.

Marston Avenue operates in an east-west direction. It links directly with the internal campus road, west of Edna Street and Circular Avenue just west of I-280.

Havelock Street operates in an east-west direction. It links directly with the internal campus road, west of Edna Street and Circular Avenue just west of I-280.

Howth Street between Ocean Avenue and Geneva Avenue operates as a one way street. It operates in the north-east direction with parking on both sides of the street. From Geneva Avenue to Mt. Vernon Avenue this street is a one-way street running in the south-west direction with parking on both sides of the street.
Geneva Avenue runs between Ocean Avenue and Bayshore Avenue close to US 101 on the eastern side of I-280. In the study area, the street has one traffic lane in each direction with parking on both sides of the street.

The Phelan Loop is a MUNI turnaround located northwest of the intersection of Phelan Avenue and Ocean Avenue. According to the CCSF Master Plan, Phelan Loop is the terminus for several MUNI bus routes that generate high volumes of pedestrian traffic through to the campus. This “loop” is closed to other vehicular traffic.

The Main Campus is also accessible from the north via Marston Avenue and Havelock Street. These roads are both perpendicular to Circular Avenue. Figure 4.3-1 illustrates the access to I-280 as well as the locations of the on- and off- ramps.

C2. On-Campus Vehicle Circulation

Cloud Circle

Cloud Circle is a one-way semicircular road through the upper campus, connecting with Phelan Avenue at either end. On average, approximately 2,000 vehicles travel along Cloud Circle each day.\(^4\)

Based on field observations, conducted by Fehr & Peers Associates in 2002, just over half of the traffic entering Cloud Circle locates a parking space on Cloud Circle itself, while 20 percent of the vehicles traveling on the roadway (approximately 400 vehicles per day) access the lower campus and associated parking areas via Marston Avenue. Approximately 28 percent of the vehicle traffic circulates on the roadway to search for parking or drop-off and pick-up passengers. Additionally, approximately 10 percent of the vehicle traffic was found to make multiple trips within a single hour on the roadway, generally searching for available parking spaces.

Havelock Street

Havelock Street connects to Cloud Circle via an interior campus roadway. Vehicles often use this as an alternative entrance and exit from the campus. On average, approximately 900 vehicles enter the campus and approximately 1,400 leave the campus via Havelock Street daily. Figure 3.0-3, Existing Campus Facilities, in Section 3.0 shows the existing campus roadways. (Existing campus circulation is also illustrated on p. 27 of the Draft Master Plan, which is on file and available for review at CCSF.)

C3. Existing Intersection Operating Conditions

Capacity constraints on the local road network usually occur at local intersections. Consequently most traffic impact analyses focus on the volume of traffic compared to the capacity at the intersection. Levels of congestion at each intersection during the peak periods are often shown by a Level of Service (LOS) analysis. LOS values generally range from LOS A (free flowing conditions) to LOS F (excessive delays and forced flow).

The LOS calculations for signalized and unsignalized intersections were based on the 2000 Highway Capacity Manual (HCM) methodology (Transportation Research Board, Special Report 209, Highway Capacity Manual, 2000). LOS is indicated by a letter grade of A–F, which is assigned based on the average delay per vehicle, in seconds. For the unsignalized intersections, the delay represents average time in seconds per vehicle for the worst movement.\(^5\) Table 1, Signalized Intersections LOS Criteria, and Table 2, Unsignalized Intersections LOS Criteria, in Appendix 4.3 show the correlation between the average delay and LOS under the 2000 HCM methodology. Table 1 also presents a general description of each LOS letter grade.

Existing intersection operating conditions were evaluated at 15 intersections for the weekday PM peak hour (found to be 5:30 to 6:30 PM for the campus) as shown on Figure 4.3-2, Study Intersections.\(^6\) Nine of the intersections are signalized; six of the intersections are controlled by stop signs.\(^7\)

Table 4.3-1, Intersection Level of Service Analysis, Existing Conditions, presents the result of the intersection LOS analysis for existing weekday PM peak hour conditions. The results for the unsignalized intersections are for the worst movement. As the table indicates, 14 of the 15 intersections operate at LOS D or better during the weekday PM peak hour. The unsignalized intersection of Phelan Avenue and Judson Avenue currently operates at LOS E.

\(^5\) Each intersection has “approaches” (the roads leading up to the intersection from each direction) and the traffic using each approach can be split into “movements” (left turn, through, right turn). The worst movement at an intersection with stop signs on the minor streets is the left turn from one of the minor streets onto the major street.

\(^6\) The study intersections were chosen in consultation with City and County of San Francisco Planning Department staff.

\(^7\) The choice of the PM peak period was in conformance with the City and County of San Francisco’s Transportation Impact Analysis Guidelines for Environmental Review, October 2002; DKS Associates consulted with Planning Department staff regarding this approach to the traffic analysis. The PM peak period was chosen because “it is the time period when the maximum use of the much of the transportation system occurs. It is also the time when most of the transportation system capacity and service is at a maximum.”
Field observations confirm these LOS calculations. At the intersection of Phelan Avenue and Judson Avenue, the field observations confirmed that there are many vehicles accessing the campus by traveling south on Phelan Avenue and turning into the “dogleg” to continue southbound. At the intersection of Howth Street and Geneva Avenue, the westbound left turn (Geneva onto Howth) conflicts with the eastbound through movement on Geneva. This unsignalized intersection has stop signs in the east–west direction.

The signalized intersection of Howth Street and Ocean Avenue experiences traffic levels that back up toward the I-280 southbound off-ramp. These back-ups are not represented in the LOS calculations, however, because the calculations do not consider the adjacent intersection. (The back-ups are discussed in the context of operating characteristics in the impacts analysis later in this section.)

The unsignalized intersections along Phelan Avenue adjacent to the Main Campus experience delays for vehicular traffic. Delays are common and caused by (1) vehicles stopping for pedestrians entering the unsignalized crosswalks between parking in the Reservoirs and the Campus, (2) vehicles making left turns from Phelan Avenue northbound into the Reservoir parking lot driveway, and (3) vehicles making left turns from Phelan Avenue southbound into Cloud Circle.

Table 4.3-1
Intersection Level of Service Analysis, Existing Conditions

<table>
<thead>
<tr>
<th>Intersection</th>
<th>LOS</th>
<th>PM Peak Hour</th>
<th>Average Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phelan Avenue and Ocean Avenue</td>
<td>C</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>2. Phelan Avenue and Judson Avenue</td>
<td>E</td>
<td>36.8</td>
<td></td>
</tr>
<tr>
<td>3. Ocean Avenue and I-280 northbound on-ramp</td>
<td>A</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>4. Ocean Avenue and I-280 southbound off-ramp</td>
<td>A</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>5. Ocean Avenue and San Jose Avenue</td>
<td>B</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>6. Paulding Street and San Jose Avenue</td>
<td>B</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>7. Ocean Avenue and Geneva Avenue</td>
<td>B</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>8. Judson Avenue and Detroit Avenue</td>
<td>C</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>9. Judson Avenue and Foerster Street</td>
<td>A</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>10. Howth Street and Geneva Avenue</td>
<td>D</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>11. Howth Street and Ocean Avenue</td>
<td>A</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>12. I-280 northbound off-ramp and Geneva Avenue</td>
<td>D</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>13. I-280 southbound on-ramp and Geneva Avenue</td>
<td>D</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>14. San Jose Avenue and Geneva Avenue</td>
<td>B</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>15. Alemany Avenue and Geneva Avenue</td>
<td>C</td>
<td>24.2</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- a. Numbers correspond with the numbers on the intersection diagrams
- b. LOS = Level of Service.
- c. Average Delay is measured in seconds.
- d. Unsignalized intersection
- e. Free right turn from I-280 southbound to Ocean Avenue Westbound

Source: DKS Associates, 2003
C4. Existing Freeway Operating Conditions

I-280 is the only freeway in the immediate study area. Currently, I-280 carries about 14,100 vehicles in both directions during the peak hour between Alemany Boulevard / San Jose Avenue and Monterey Boulevard / San Jose Avenue. The Average Annual Daily Traffic (AADT) in the area is about 191,000 vehicles per day.\(^8\) There are two segments of I-280 that are within the study area. **Table 4.3-2, Existing Freeway Level of Service**, lists the LOS for the two segments. Both segments currently operate at LOS D or better during the PM peak hour.

<table>
<thead>
<tr>
<th>Freeway</th>
<th>Segment</th>
<th>Direction</th>
<th>Peak Hour</th>
<th>Lanes</th>
<th>Average Speed</th>
<th>Volume</th>
<th>LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-280</td>
<td>Alemany / San Jose to Ocean / Geneva</td>
<td>NB</td>
<td>PM</td>
<td>4</td>
<td>65</td>
<td>6060</td>
<td>C</td>
</tr>
<tr>
<td>I-280</td>
<td>Ocean / Geneva to Monterey / San Jose</td>
<td>NB</td>
<td>PM</td>
<td>4</td>
<td>65</td>
<td>6320</td>
<td>D</td>
</tr>
<tr>
<td>I-280</td>
<td>Monterey / San Jose to Ocean / Geneva</td>
<td>SB</td>
<td>PM</td>
<td>4</td>
<td>65</td>
<td>8380</td>
<td>D</td>
</tr>
<tr>
<td>I-280</td>
<td>Ocean / Geneva to Alemany / San Jose</td>
<td>SB</td>
<td>PM</td>
<td>4</td>
<td>65</td>
<td>8040</td>
<td>D</td>
</tr>
</tbody>
</table>

Source: DKS Associates

C5. Transit Network

BART, MUNI light rail lines and MUNI buses serve the Main Campus; students, faculty and staff are eligible to purchase transit passes at reduced rates. **Figure 4.3-3, Existing Public Transportation Network in the Campus Vicinity**, illustrates the transit service and the bus and rail stops in the area near the campus.

BART

BART provides local and regional transportation to the Main Campus for approximately 4,000 students and faculty daily.\(^9\) The Balboa Park MUNI Metro/BART Station is located between Geneva Avenue, Ocean Avenue, San Jose Avenue, and I-280 and is the primary station for access to the campus. Combined, the four lines serving the station (Fremont/Daly City, Richmond/ Daly City, Millbrae/

Pittsburg Bay Point, Dublin Pleasanton/San Francisco International Airport) provide service in both directions at approximately five-minute intervals.

MUNI

MUNI operates three light rail lines and eight bus routes connecting the campus to the other neighborhoods of San Francisco. Table 4.3-3, *Nearby MUNI Service*, lists the characteristics of the MUNI routes that serve the Main Campus.

<table>
<thead>
<tr>
<th>Route</th>
<th>Place of Origin</th>
<th>Place of Termination</th>
<th>PM Peak Headway</th>
<th>Nearest Stop(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Ingleside</td>
<td>Balboa Park station</td>
<td>Embarcadero</td>
<td>10 minutes</td>
<td>Ocean Avenue</td>
</tr>
<tr>
<td>M-Ocean View</td>
<td>Balboa Park station</td>
<td>Embarcadero</td>
<td>10 minutes</td>
<td>Balboa Park station</td>
</tr>
<tr>
<td>J-Church</td>
<td>Balboa Park station</td>
<td>Embarcadero</td>
<td>10 minutes</td>
<td>Balboa Park station</td>
</tr>
<tr>
<td>15-Third Street</td>
<td>Fisherman’s Wharf</td>
<td>Phelan Loop</td>
<td>10 minutes</td>
<td>Phelan Loop</td>
</tr>
<tr>
<td>49 Van Ness-Mission</td>
<td>Van Ness and North Point</td>
<td>Phelan Loop</td>
<td>10 minutes</td>
<td>Ocean, Phelan Loop</td>
</tr>
<tr>
<td>29-Sunset</td>
<td>The Presidio</td>
<td>3COM Park</td>
<td>15 minutes</td>
<td>Ocean</td>
</tr>
<tr>
<td>43-Masonic</td>
<td>Marina District</td>
<td>Crocker Amazon</td>
<td>10 minutes</td>
<td>Judson/ Phelan</td>
</tr>
<tr>
<td>36-Theresita</td>
<td>Twin Peaks</td>
<td>Balboa Park BART</td>
<td>20 Minutes</td>
<td>Judson/ Phelan</td>
</tr>
<tr>
<td>54-Felton</td>
<td>Hunter’s Point</td>
<td>Daly City BART</td>
<td>20 Minutes</td>
<td>Howth and Geneva</td>
</tr>
<tr>
<td>23-Monterey</td>
<td>Hunter’s Point</td>
<td>San Francisco Zoo</td>
<td>15 minutes</td>
<td>Monterey Boulevard</td>
</tr>
<tr>
<td>26-Valencia</td>
<td>Powell Street BART</td>
<td>San Francisco State University</td>
<td>20 Minutes</td>
<td>Balboa Park station</td>
</tr>
</tbody>
</table>

Of the 16,000 daily-enrolled students, about 44 percent use transit to access the campus. Ingleside has the greatest population of students attending the Main Campus, and has the largest number of transit lines serving the area (six MUNI lines). The Mission area has about 2,000 students attending the Main Campus; BART and two MUNI lines serve the Mission.

Table 3, *Estimated Daily Transit Trips to Ocean Avenue Campus*, in Appendix 4.3 of this EIR lists the number of students and faculty traveling to the Main Campus via each of the transit lines that serve the campus. The Balboa Park MUNI Metro/BART station has the majority of the transit trips for students.
and faculty to the campus, with 63 percent of all transit trips. The second most utilized transit line is the MUNI Line 43, which carries 16 percent of those riding transit to campus.

C5. Parking Conditions

On-Campus Parking

In general, the current demand for on-campus parking exceeds the supply. Parking facilities are generally considered to be essentially full when occupancy exceeds 90 percent. The parking supply at the Main Campus consists of 2,244 off-street parking spaces, of which 1,465 spaces are designated for students, located in the north and south basins of the Balboa Reservoir west of Phelan Avenue. The remaining 779 parking spaces, located east of Phelan Avenue, are designated for staff, faculty and ADA-accessible parking.

The reservoir parking lots serve approximately 3,700 vehicles each day. Based on parking occupancy counts, the on-campus parking supply, with the exception of the South Reservoir lot, approaches capacity by 10:00 AM on a typical school day. The South Reservoir approaches capacity by 11:00 AM.

The reservoir parking is accessed through a single uncontrolled driveway on Phelan Avenue. The steep berm separating the north and south basins contributes to poor circulation between the two basins.

Off-Campus Parking

An on-street, off-campus parking occupancy survey was conducted within an area bounded by Plymouth Avenue, Monterey Boulevard, Detroit Avenue, San Jose Avenue and south to Niagara Avenue. A parking inventory determining the number of parking spaces and a survey of on-street parking utilization were conducted during a typical weekday PM peak period (4:00 PM to 8:00 PM). Spaces are not marked in the study area. As such, the parking inventory will change based on the mix of cars parked in the area. The existing parking regulations were also determined for the area. The results are shown in Table 4, Parking Survey Summary, in Appendix 4.3 of this EIR.

Parking intrusion into the adjacent residential neighborhoods is prevalent, as vacant parking on residential streets is generally occupied by CCSF-bound motorists as soon as it becomes available. The on-street parking supply is essentially full throughout the day; based on pedestrian movements observed

10 Source: The on-campus parking survey was conducted October 23 and 24, 2003 and November 20 and 21, 2003 for the Opportunities and Constraints Analysis, City College of San Francisco, Institutional Master Plan, Fehr & Peers Associates, October 2002.

11 The approach to the parking survey was chosen in consultation with City and County of San Francisco Planning Department staff.
during field observations, it is estimated that at least 3,000 vehicles are parked by CCSF-bound motorists in adjacent neighborhoods throughout the day.12

C6. Pedestrian Conditions

There are four main pedestrian entrances to the Main Campus, one from each direction. Cloud Circle, on the western side of the campus, serves as the main pedestrian thoroughfare through the campus.

Surrounding the campus, most sidewalks are close to eight feet in width. In other areas of the neighborhood the sidewalks are only five to six feet in width. With the exception of Havelock Street there are no streets in the area that do not have sidewalks. Havelock Street is a narrow street with no sidewalks.

Southern Entrance

The south entrance to the Campus is located on Ocean Avenue at Howth Street. This is the main access for pedestrians arriving from BART and the MUNI lines J, M, 54 and 49, and for the students residing and parking in the neighborhood southeast of the campus. A number of the pedestrians traveling from BART to campus choose to walk through the MUNI rail yard located next to the Balboa Park MUNI Metro/BART Station. Other pedestrians walk along Geneva Avenue to the pedestrian bridge into the existing Student Union complex. BART is currently studying the addition of another entrance to the Balboa Park MUNI Metro/BART Station.13

Pedestrians coming from the southeast cross Ocean Avenue at Howth Street, and then use Parking Lot B to access the campus. Based on field observations, the majority of these pedestrians were from the Balboa Park MUNI Metro/BART Station.

Western Entrance

The western entrance to the campus along Phelan Avenue is Cloud Circle. The pedestrians using transit lines along Phelan Avenue, Ocean Ave and the Phelan Loop access the campus through the Cloud Circle entrance. The Phelan Loop area is a major thoroughfare for pedestrians walking to the campus from the west. The Phelan Loop area serves as the terminus for MUNI Lines 15 and 49, and MUNI Metro Line K and MUNI Line 29 stop at the intersection of Lee Avenue and Ocean Avenue nearby. Many of the

13 One option for this entrance is along Ocean Avenue. However, BART has indicated that an entrance midway between the current Geneva Avenue entrance and Ocean Avenue is more feasible. According to BART, there is a short-term plan for access to the north but any improvements would await the outcome of a feasibility study to determine the preferred location in the long term. Funding for this project is not yet available. Source: personal communication between Peter Albert, BART, and DKS Associates.
pedestrians use the unsignalized crosswalk just north of the Phelan Avenue and Ocean Avenue intersection. There were 16 recorded accidents involving pedestrians at this location from 1995 through 1999.\(^\text{14}\)

Northern Entrance

The northern entrance to the campus is on Judson Avenue near Gennessee Street. It is also the northern end of the main north/south pedestrian axis through campus. This entrance serves pedestrians using MUNI Lines 36 and 43 as well as students parking or living in the neighborhood north of the campus. The transit stops on the north side of Judson Avenue are located mid-block; consequently, many pedestrians cross Judson Avenue mid-block rather than at the nearest intersection.

Eastern Entrance

The campus can be accessed from the east via Havelock Street, which extends onto the campus. There is a bridge over I-280 connecting areas east of the freeway and Balboa Park to the campus. MUNI Line 26 operates along San Jose Avenue with stops at San Jose Avenue/Santa Ynez Avenue and San Jose Avenue/Nantucket Avenue.

Existing Pedestrian Levels of Service

The LOS calculations for pedestrians were also based on the 2000 Highway Capacity Manual (HCM) methodology. The LOS is indicated by a letter grade of A–F, which is assigned based on the volume to capacity (v/c) ratio (the ratio of pedestrians using a given sidewalk to the overall carrying capacity of that sidewalk). Table 5, *Average Flow LOS Criteria for Sidewalks and Walkways*, in Appendix 4.3 of this EIR shows the correlation between the LOS, pedestrian flows, and v/c ratios. Table 6, *Summary of Pedestrian Level of Service Analysis*, in Appendix 4.3 shows that the pedestrian facilities at all the study intersections currently operate with no significant delay. Field observations confirm this analysis. Although some intersections experience surges in peak-hour pedestrian movements, the sidewalks are adequate to accommodate the volumes.

C7. Bicycle Conditions

Although bicycling is an inexpensive form of transportation that is often prevalent on many college campuses, a variety of factors limit opportunities for bicycling to and from the CCSF Main Campus. As a commuter college, CCSF has a student population that resides throughout the City and is not

concentrated within bicycling distance of campus. Bicycling is generally most convenient as a form of transportation for trips of five miles or less.\(^\text{15}\)

Although the Ingleside neighborhood, within convenient bicycling distance of the Main Campus, is home to the greatest number of CCSF students in comparison with other neighborhoods, there are relatively few facilities that serve cyclists. The existing facilities surrounding the campus are limited to shared facilities with the traffic lanes. The City of San Francisco Bicycle Plan designates Phelan Avenue, portions of Ocean and Geneva Avenues, and Holloway Avenue connecting the Main Campus with San Francisco State University, as bicycle routes.\(^\text{16}\) However, the planned bikeway network has not been implemented yet.

In the near future, the City and County of San Francisco plans to install Class II bicycle facilities along Phelan Avenue. (Class II facilities are bicycle facilities that allow bicyclists to drive alongside traffic in dedicated lanes marked by striping.) There will be two northbound travel lanes with one of these containing dedicated turning bays for the reservoir parking. There will be one southbound travel lane.

Relatively few bicyclists were observed on campus and on adjoining roadways, and on-campus bicycling support facilities, such as safe and secure bicycle parking, are limited. There are four bicycle-parking locations on campus:

- Ram Plaza,
- In front of Cloud Hall,
- Next the Creative Arts building, and
- Next to Batmale Hall.

C8. Loading Conditions

The food service department currently receives its deliveries on the Ocean Avenue side of the Smith/Statler building. All other deliveries are received at the central loading dock at the north end of Cloud Hall. Deliveries occur during the early morning for the most part, but are not restricted to those hours.\(^\text{17}\) On average there are 8 to 10 delivery trucks operating through the Central delivery loading area each day.

\(^{17}\) Source: Personal communication from City College of San Francisco to DKS Associates.
D. EXISTING PLANS, POLICIES AND REGULATIONS

D1. San Francisco General Plan

Transportation, circulation and parking are addressed in the Transportation Element of the San Francisco General Plan. The following are the relevant transportation policies in the General Plan (project consistency with General Plan policies is discussed in Section 4.1, Land Use and Planning): 18

Transportation Element

- **Objective 1:** Meet the needs of all residents and visitors for safe, convenient and inexpensive travel within San Francisco and between the City and other parts of the region while maintaining the high quality living environment of the Bay Area.
 - Policy 1.2: Ensure the safety and comfort of pedestrians throughout the city.
 - Policy 1.3: Give priority to public transit and other alternatives to the private automobile as the means of meeting San Francisco's transportation needs, particularly those of commuters.

- **Objective 2:** Use the transportation system as a means for guiding development and improving the environment.
 - Policy 2.5: Provide incentives for the use of transit, carpools, vanpools, walking and bicycling and reduce the need for new or expanded automobile and automobile parking facilities.

- **Objective 11:** Maintain public transit as the primary mode of transportation in San Francisco and as a means through which to guide future development and improve regional mobility and air quality.
 - Policy 11.3: Encourage development that efficiently coordinates land use with transit service, requiring that developers address transit concerns as well as mitigate traffic problems.

- **Objective 12:** Develop and implement programs in the public and private sectors, which will support congestion management and air quality objectives, maintain mobility and enhance business vitality at minimum cost.
 - Policy 12.1: Develop and implement strategies which provide incentives for individuals to use public transit, ridesharing, bicycling and walking to the best advantage, thereby reducing the number of single occupant auto trips.

18 For discussion of these policies please refer to the Transportation Element.
Policy 12.4: Encourage private and public sector cooperation in the promotion of alternative work programs designed to reduce congestion and the number of automobile trips.

- Objective 16: Develop and implement programs that will efficiently manage the supply of parking at employment centers throughout the City so as to discourage single-occupant ridership and encourage ridesharing, transit and other alternatives to the single-occupant automobile.
 - Policy 16.1: Reduce parking demand through the provision of comprehensive information that encourages the use of alternative modes of transportation.
 - Policy 16.2: Reduce parking demand where parking is subsidized by employers with "cash-out" programs in which the equivalency of the cost of subsidized parking is offered to those employees who do not use parking facilities.
 - Policy 16.3: Reduce parking demand through the provision of incentives for the use of carpools and vanpools at new and existing parking facilities throughout the City.
 - Policy 16.4: Manage parking demand through appropriate pricing policies including the use of premium rates near employment centers well-served by transit, walking and bicycling, and progressive rate structures to encourage turnover and the efficient use of parking.
 - Policy 16.5: Reduce parking demand through limiting the absolute amount of spaces and prioritizing the spaces for short-term and ride-share uses.
 - Policy 16.6: Encourage alternatives to the private automobile by locating public transit access and ride-share vehicle and bicycle parking at more close-in and convenient locations on-site, and by locating parking facilities for single-occupant vehicles more remotely.

- Objective 20: Give first priority to improving transit service throughout the City, providing a convenient and efficient system as a preferable alternative to automobile use.
 - Policy 20.2: Reduce, relocate or prohibit automobile facility features on transit preferential streets, such as driveways and loading docks, to avoid traffic conflicts and automobile congestion.

- Objective 21: Develop transit as the primary mode of travel to and from Downtown and all major activity centers within the region.
 - Policy 21.9: Improve pedestrian and bicycle access to transit facilities.

- Objective 23: Improve the City’s pedestrian circulation system to provide for efficient, pleasant, and safe movement.
 - Policy 23.2: Widen sidewalks where intensive commercial, recreational, or institutional activity is present and where residential densities are high.
4.3 Transportation and Circulation

- Policy 23.6: Ensure convenient and safe pedestrian crossings by minimizing the distance pedestrians must walk to cross a street.

- Objective 28: Provide secure and convenient parking facilities for bicycles
 - Policy 28.1: Provide secure bicycle parking in new governmental, commercial, and residential developments.

- Objective 30: Ensure that the provision of new or enlarged parking facilities does not adversely affect the livability and desirability of the City and its various neighborhoods.
 - Policy 30.1: Assure that new or enlarged parking facilities meet need, locational and design criteria.

- Objective 31: Establish parking rates and off-street parking fare structures to reflect the full costs, monetary and environmental, of parking in the City.
 - Policy 31.1: Set rates to encourage short-term over long term automobile parking.
 - Policy 31.2: When off-street parking near institutions and in commercial areas outside of downtown is in short supply, set parking rates to encourage higher turnover and more efficient use of the parking supply.

- Objective 33: Contain and lessen the traffic and parking impact of institutions on surrounding residential areas.
 - Policy 33.1: Limit the provision of long-term parking facilities at institutions and encourage such institutions to regulate existing facilities to assure use by short-term clients and visitors.
 - Policy 33.2: Protect residential neighborhoods from the parking impacts of nearby traffic generators.

- Objective 40: Enforce a parking and loading strategy for freight distribution to reduce congestion affecting other vehicular traffic and adverse impacts on pedestrian circulation.
 - Policy 40.1: Provide off-street facilities for freight loading and service vehicles on the site of new buildings sufficient to meet the demands generated by the intended uses. Seek opportunities to create new off-street loading facilities for existing buildings.
 - Policy 40.2: Discourage access to off-street freight loading and service vehicle facilities from transit preferential streets, or pedestrian-oriented streets and alleys by providing alternative access routes to facilities.
 - Policy 40.9: Where possible, mitigate the undesirable effects of noise, vibration and emission by limiting late evening and early hour loading and unloading in retail, institutional, and industrial facilities abutting residential neighborhoods.
Balboa Park Station Area Plan

The Plan’s policies that are pertinent to transportation (as related to the Main Campus Master Plan) are described below (project consistency with Plan policies is discussed in Section 4.1, Land Use and Planning).

Key Strategy #8: Integrate City College Into the Community

- Objective 3: Minimize the impacts that the College, as a large institution, places on the surrounding neighborhood.
 - Policy 3.1: Establish a parking and transportation demand management program for City College.
 - Policy 3.2: Plan locations of parking facilities so as to minimize traffic through the neighborhood.

Key Strategy #9: Realize the Potential of the Balboa Reservoir

- Objective 3: Ensure that the east basin of the reservoir is developed in a manner that embraces the surrounding neighborhood.
 - Policy 3.4: Ensure parking facilities are well designed and not larger than necessary.

E. SIGNIFICANCE THRESHOLDS

For purposes of this EIR, thresholds were used from both the City and County of San Francisco Initial Study Checklist and Appendix G of the CEQA Guidelines (Environmental Checklist Form).

The environmental checklist used by the City and County of San Francisco includes the following criteria for determining whether a project could have a significant air quality or climate impact:

Could the project:

a. Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system?

b. Interfere with existing transportation systems, causing substantial alterations to circulation patterns or major traffic hazards?

c. Cause a substantial increase in transit demand which cannot be accommodated by existing or proposed transit capacity?

d. Cause a substantial increase in parking demand which cannot be accommodated by existing parking facilities?
Appendix G of the CEQA Guidelines (Environmental Checklist Form) lists the following items to be considered when determining whether a project could have a significant effect on the environment:

Would the project:

- Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections);
- Exceed, either individually or cumulatively, a level of service established by the county congestion management agency for designated roads or highways;
- Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks;
- Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment);
- Result in inadequate emergency access;
- Result in inadequate parking capacity; or
- Conflict with applicable policies, plans or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks).

The impacts analysis in this EIR is based on the CEQA significance criteria for transportation, circulation and parking defined by the City and County of San Francisco Planning Department, as follows.

Local Intersections

In San Francisco, a project typically is considered to have a significant effect on the environment if it would cause intersection operations to deteriorate to an unacceptable level; interfere with existing transportation systems causing substantial alteration to circulation patterns or causing major traffic hazards; contribute substantially (“considerably”) to cumulative traffic increases at intersections that would result in deterioration of traffic conditions to unacceptable levels; or contribute substantially to cumulative traffic increases at intersections already operating at unacceptable levels.

As defined by the City and County of San Francisco, the operational impact at signalized intersections is considered significant when project-related traffic causes the intersection level of service to deteriorate from LOS D or better to LOS E or F, or from LOS E to LOS F. The project may result in significant adverse impacts at intersections that operate at LOS E or F under existing conditions depending upon the magnitude of the project’s contribution to the worsening of the average delay per vehicle. In addition, the project would have a significant adverse impact if it would cause major traffic hazards or contribute considerably to cumulative traffic increases that would cause deterioration in levels of service to unacceptable levels.
4.3 Transportation and Circulation

Transit

The project would have a significant effect on the environment if it would cause a substantial increase in transit demand that could not be accommodated by adjacent transit capacity, resulting in unacceptable levels of transit service; or cause a substantial increase in delays or operating costs such that significant adverse impacts in transit service levels could result. Under the MUNI and regional transit screenlines analyses, the project would have a significant effect on the transit provider if project-related transit trips would cause the capacity utilization standard to be exceeded during the PM peak hour.

Parking

San Francisco does not consider parking supply as part of the permanent physical environment. Parking conditions are not static, as parking supply and demand varies from day to day, from day to night, from month to month, etc. Hence, the availability of parking spaces (or lack thereof) is not a permanent physical condition, but changes over time as people change their modes and patterns of travel.

Parking deficits are considered to be social effects, rather than impacts on the physical environment as defined by CEQA. Under CEQA, a project’s social impacts need not be treated as significant impacts on the environment. Environmental documents should, however, address the secondary physical impacts that could be triggered by a social impact. (CEQA Guidelines § 15131(a).) The social inconvenience of parking deficits, such as having to hunt for scarce parking spaces, is not an environmental impact, but there may be secondary physical environmental impacts, such as increased traffic congestion at intersections, air quality impacts, safety impacts, or noise impacts caused by congestion. In the experience of San Francisco transportation planners, however, the absence of a ready supply of parking spaces, combined with available alternatives to auto travel (e.g., transit service, taxis, bicycles or travel by foot) and a relatively dense pattern of urban development, induces many drivers to seek and find alternative parking facilities, shift to other modes of travel, or change their overall travel habits. Any such resulting shifts, to transit service in particular, would be in keeping with the City’s “Transit First” policy. The City’s Transit First Policy Established in the City’s Charter Section 16.102 provides that “parking policies for areas well served by public transit shall be designed to encourage travel by public transportation and alternative transportation.”

(There are a number of alternatives for access to the campus. These are described in more detail in previous sections of the report. Alternative means to access the CCSF Main Campus include public transportation (BART, MUNI Metro, and MUNI buses) walking, and bicycling. At present walking and bicycling to the campus are not as prevalent as modes of access as driving and public transportation. Bike lanes are provided near the campus with plans to build Class II lanes along Phelan Avenue. Existing on-site parking is located throughout the campus and west of Phelan Avenue. The transportation analysis accounts for potential secondary effects, such as cars circling and looking for a parking space in areas of limited parking supply, by assuming that all drivers would attempt to find parking at or near the
project site and then seek parking farther away if convenient parking is unavailable. Moreover, the secondary effects of drivers searching for parking is offset in part by a reduction in vehicle trips due to others who are aware of constrained parking conditions in a given area and therefore do not drive. The secondary environmental impacts that may result from a shortfall in parking in the vicinity of the proposed project are considered in the traffic assignments used in the transportation analysis, as well as in the associated air quality, noise and pedestrian safety analyses.)

Pedestrians and Bicyclists

For this analysis, the project would have a significant effect on the environment if it would result in substantial overcrowding on public sidewalks, create potentially hazardous conditions for pedestrians, or otherwise interfere with pedestrian accessibility to the site and adjoining areas. The project would have a significant effect on the environment if it would create potentially hazardous conditions for bicyclists or otherwise substantially interfere with bicycle accessibility to the site and adjoining area.

Loading

The City and County of San Francisco has not adopted significance criteria for potential impacts related to loading activities. Loading impacts were assessed by comparing the proposed loading space supply to the Planning Code requirements and the estimated loading demand during the peak hour of loading activities.

Construction

Construction-related impacts generally would not be considered significant due to their temporary and limited duration.

Freeway Impacts

The City and County of San Francisco has not adopted significance criteria for potential impacts related to freeways. For the purposes of this EIR, if the additional traffic to and from the campus causes the Level of Service on the Freeway to degrade from LOS D or better to LOS E or F, the impact will be considered significant.

If implementation of the project exceeds any of the City and County of San Francisco standards outlined above, the project would result in a significant impact.
F. IMPACTS AND MITIGATION MEASURES

Project Travel Demand Analysis

Trip Generation

Based on California Department of Finance projections, enrollment at the Main Campus is projected to increase to about 50,400 students by the 2015/2016 school year, a 37 percent increase. Based on interpolation, there will be approximately 41,000 students by the 2006/2007 school year (the year assumed for completion of the near-term development). It is estimated that the numbers of campus faculty and staff will increase at similar rates. Based on the projected enrollment, there will be 1,200 full-time employees and 1,500 part-time employees by the 2015/2016 school year and 1,000 full-time employees and 1,200 part-time employees by the 2006/2007 school year. Table 7, Projected Enrollment and Employment for the Ocean Avenue Campus, in Appendix 4.3 lists these projections.

Based on the projected increase in campus population, there will be 560 additional person-trips to and from the campus in the PM peak hour in 2006/2007, and 1,850 additional person-trips in 2015/2016. About 69 percent of these trips would be inbound to the campus, and about 31 percent would be outbound from the campus. Table 8, PM Peak Hour Person Trips To and From the Ocean Avenue Campus in Appendix 4.3, shows the estimated inbound, outbound, and total person-trips during the PM peak hour. In addition to these trips, the proposed Community Health & Wellness Center would generate an additional 300 person-trips, with about 37 percent entering the center and about 63 percent exiting the center (see Table 9, Community Health & Wellness Center Person Trips, in Appendix 4.3). In total, there would be an additional 860 person-trips during the PM peak hour in 2006/2007, and an additional 2,150 person-trips during the PM peak hour in 2015/2016.

Trip Distribution

The Main Campus has students enrolled from various San Francisco neighborhoods as well as Colma, San Bruno, Daly City, South San Francisco, and San Mateo. Table 10, Student Enrollment by Zip Code, in Appendix 4.3 illustrates the number of students from each area enrolled at the Main Campus during the fall term in 2001. Most of the students are in “Superdistrict 3,” one of the four areas used by the City and County of San Francisco for transportation analysis. The future student and staff population is assumed to have the same distribution as the existing student population.

19 Superdistrict 3 is the largest superdistrict that covers the San Francisco area. The northern border is along Townsend Street, 11th Street, Market St between Franklin Street and Castro Street, 17th Street between Market Street and Stanyan Way, Stanyan Way between 17th Street and Lincoln Way and Lincoln Way between Stanyan Way and Seventh Avenue. The western border follows Seventh Ave, Laguna Honda Blvd, Evelyn Ave, Juanita Ave, Portola Drive, Casitas Avenue, El Verano Way, Kenwood Way, Keystone Way, Ashton Avenue, and Orizaba Avenue to the City limits. The southern edge is the city limits and the eastern edge is the San Francisco Bay. The CCSF Main Campus is located in the middle of this superdistrict.
The proposed Community Health & Wellness Center would be open to members of the public. Therefore, it was assumed that 25 percent of people accessing this site would come from each direction. All local trips to the Community Health & Wellness Center were assumed to come from within Superdistrict 3.

Modal Split and Average Vehicle Occupancy

During the average weekday PM peak hour, approximately 71 percent of all person-trips would be by auto, 23 percent by transit, and 6 percent by walking. Assumed average vehicle occupancies from the City Transportation Guidelines were used to convert person-trips to vehicle trips. In 2006/2007, there would be an additional 389 vehicle trips during the weekday PM peak hour; in 2015/2016, there would be an additional 1,055 vehicle trips during the PM peak hour. Table 11, Modal Split for Trips to and from Superdistrict 3, Table 12, Combined PM Peak Hour Trips by Mode, 2006 and Table 13, Combined PM Peak Hour Trips by Mode, 2015 in Appendix 4.3 show the mode splits, vehicle occupancies, and trip generation estimates for all origins/destinations and by superdistrict.

For both the 2006 and the 2015 project conditions, the tables show that there is a large proportion of people within the main area served by the campus (Superdistrict 3) that will walk or use transit to and from the Main Campus. These tables also show that most of the trips to and from the campus are within the City of San Francisco limits.

Trip Assignment

Based on the location of the student population, trips were assigned to the network based on logical travel patterns. For instance most trips to either the north or the south were assigned to I-280 and the appropriate intersections serving these facilities. It was assumed the new student trips would park in the existing and proposed reservoir parking facilities and that the new faculty and staff trips as well as the Community Health & Wellness Center trips would access the new parking structure east of the stadium via the intersection of Howth Street and Ocean Avenue. These assumptions were determined based on the existing locations of faculty and staff parking facilities in various lots throughout campus and the existing student parking facilities in the reservoirs.

20 Source: Personal communication with the City College of San Francisco staff and City of San Francisco Planning Department staff.
Impact Analysis

Traffic-1 Impacts to Local Intersections

Impact

Master Plan Buildout

The analysis of the impacts of Master Plan buildout is reflected in the “2015 Project Condition” scenario. This scenario assumes build-out of the Master Plan, along with the student and staff population projected for the year 2015/2016. At least some of the projected increase in campus population would occur without the proposed Master Plan, and thus would not be “caused by” or “generated by” the project. For this EIR, however, the analysis of impacts is based on the “worst case” assumption that all of the increase in population would be caused by the project.

Table 4.3-4, Level of Service Summary, illustrates the level of service for each of the study intersections for the existing plus 2015 project conditions scenario. Traffic signal warrants (tests for considering whether signals are needed) for the two unsignalized intersections are in the DKS Associates technical report (available for review at CCSF, as noted at the beginning of this section). Thirteen of the 15 intersections would operate at LOS D or better at Master Plan buildout.

The unsignalized intersection of Phelan Avenue and Judson Avenue currently operates at LOS E with an average delay of 36.8 seconds (the V/C ratio is 0.7). In 2015, the intersection would degrade to a LOS F with an average delay of 52.5 seconds (the V/C ratio is 0.8). The LOS of an unsignalized intersection is based on the movement with the greatest delay. The movement that causes the intersection of Phelan Avenue and Judson Avenue to operate at LOS E is the southbound approach on Phelan Avenue. The City and County of San Francisco has no set significance criteria for unsignalized intersections. As a general guideline in San Francisco, at unsignalized intersections that are not four-way-stop-controlled, the project would need to result in degradation of at least one approach to LOS E or F, all approaches would need to operate at a LOS E or F, and the intersection would need to meet a Caltrans peak hour traffic signal warrant (Caltrans Traffic Manual, Chapter 9) for the impact to be significant. The southbound approach is the only approach at this intersection that would operate at LOS F. Therefore, not all approaches would operate at LOS E or F and the project impact at this intersection would be less than significant. (Although the intersection of Phelan Avenue and Judson Avenue would warrant consideration of a traffic signal by 2006, this intersection also warrants a signal currently. The Master Plan would not cause the need for a signal and Master Plan traffic would not exceed the standard of significance. This intersection is not currently programmed for any capital improvements.)

Source: Personal communication, Brian Dusseault, City of San Francisco, with DKS Associates.
The unsignalized intersection of Howth Street and Geneva Avenue currently operates at LOS D with an average delay of 26.9 seconds. In 2015, the intersection would degrade to LOS E with an average delay of 41.9 seconds (the V/C ratio would be 1.2). The westbound approach is the only approach at this intersection that would operate at LOS F. In addition, this intersection would not meet the Caltrans peak hour traffic signal warrant. Therefore, the project impact at this intersection would be less than significant.

The City Guidelines for traffic analysis include analysis of intersections based on the average delay per vehicle, which in turn is translated to a LOS. The significance criteria for impact assessment are based on the LOS. However, there are other traffic operational factors that motorists experience that are not reflected in the LOS analysis. Examples of these factors include site distance limitations, vehicle queuing, left-turn stacking lengths, and the effects of freeway ramp metering on city streets. These other traffic operational factors do not have significance thresholds under the City’s Guidelines. In the case of the CCSF Main Campus, one of these factors is the queuing that currently occurs on Ocean Avenue between Howth Street and the I-280 southbound off-ramp. This condition would be exacerbated by project-generated traffic along Ocean Avenue. The effect is noted for informational purposes only, but is not considered a significant impact under the City Guidelines.

Near-Term Development

The traffic impacts of the proposed near-term projects (the Community Health & Wellness Center, Student Health Center & Classroom Building (Health Center), Child Development, practice field relocation and reservoir berm removal/wall construction) are reflected in the analysis of 2006/2007 conditions. As shown in Table 4.3-4, in 2006/2007 all intersections would operate at LOS D or better except for the intersection of Phelan Avenue and Judson Avenue, which would operate at LOS E with an average delay of 42.6 seconds (the V/C ratio is 0.6). The average delay would increase by 5.8 seconds over the existing condition. The movement that causes the intersection of Phelan Street and Judson Avenue to operate at LOS E is the southbound approach. Since this approach is the only approach at this intersection operating at LOS E, the project impact at this intersection would not be significant.

Reservoir Configuration

If the MOU between CCSF and SFPUC were not approved and the Balboa Reservoir was not reconfigured, Master Plan development would occur within the southern reservoir only. The potential impacts to local intersections would be similar to those described for development on the reconfigured reservoir, because the primary access would still be from Phelan Avenue.
Table 4.3-4
Level of Service Summary

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Existing Condition</th>
<th>Existing plus 2006 Project Condition</th>
<th>Existing plus 2015 Project</th>
<th>2015 Cumulative plus Project Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOS(^1), Average Delay(^2)</td>
<td>LOS Average Delay</td>
<td>LOS Average Delay</td>
<td>LOS Average Delay</td>
</tr>
<tr>
<td>1 Phelan Ave and Ocean Ave</td>
<td>C</td>
<td>22.3</td>
<td>19.4</td>
<td>D</td>
</tr>
<tr>
<td>2 Phelan Ave and Judson Ave(^3)</td>
<td>E</td>
<td>36.8 (0.7)(^4)</td>
<td>42.6 (0.8)(^4)</td>
<td>F</td>
</tr>
<tr>
<td>3 Ocean Ave and I-280 NB On-Ramp</td>
<td>A</td>
<td>8.0</td>
<td>A</td>
<td>8.5</td>
</tr>
<tr>
<td>4 Ocean Ave and I-280 SB Off-Ramp(^5)</td>
<td>A</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5 Ocean Ave and San Jose Ave</td>
<td>B</td>
<td>10.4</td>
<td>10.6</td>
<td>B</td>
</tr>
<tr>
<td>6 Paulding Street and San Jose Ave(^2)</td>
<td>B</td>
<td>14.7</td>
<td>C</td>
<td>15.6</td>
</tr>
<tr>
<td>7 Ocean Ave and Geneva Ave</td>
<td>B</td>
<td>14.1</td>
<td>B</td>
<td>15.7</td>
</tr>
<tr>
<td>8 Judson Ave and Detroit Ave(^3)</td>
<td>C</td>
<td>15.3</td>
<td>C</td>
<td>15.3</td>
</tr>
<tr>
<td>9 Judson Ave and Foerster St(^6)</td>
<td>A</td>
<td>10.0</td>
<td>A</td>
<td>10.0</td>
</tr>
<tr>
<td>10 Howth St and Geneva Ave(^3)</td>
<td>D</td>
<td>26.9</td>
<td>D</td>
<td>32.1</td>
</tr>
<tr>
<td>11 Howth St and Ocean Ave(^3)</td>
<td>A</td>
<td>2.7</td>
<td>A</td>
<td>5.1</td>
</tr>
<tr>
<td>12 I-280 NB On & Off-ramp and Geneva Ave</td>
<td>D</td>
<td>35.6</td>
<td>D</td>
<td>39.0</td>
</tr>
<tr>
<td>13 I-280 SB On & Off-ramp and Geneva Ave</td>
<td>D</td>
<td>35.8</td>
<td>D</td>
<td>38.9</td>
</tr>
<tr>
<td>14 San Jose Ave and Geneva Ave</td>
<td>B</td>
<td>15.6</td>
<td>B</td>
<td>15.7</td>
</tr>
<tr>
<td>15 Alemany Ave and Geneva Ave</td>
<td>C</td>
<td>24.2</td>
<td>C</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Notes:
\(^1\) LOS is the Level of Service.
\(^2\) Average Delay is measured in seconds.
\(^3\) Unsignalized intersection.
\(^4\) (V/C) is the volume to capacity ratio of the intersection, shown for the unsignalized intersections operating at LOS E or F
\(^5\) This ramp operates as a free flow right turn. However there are queues on this southbound ramp due to the intersection operations at Howth Street and Ocean Avenue.
Mitigation

No mitigation is required. However, CCSF plans to implement Transportation Demand Management (TDM) measures to minimize the increase in future vehicle trips to the campus, and help reduce current vehicle traffic. (These measures are identified as required mitigation under Impact Traffic-9 later in this section.)

Significance After Mitigation

Less than significant.

Traffic-2 Transit Impacts

Impact

Table 14, New Transit Trips To and From Ocean Avenue Campus, 2006, PM Peak Hour and Table 15, New Transit Trips To and From Ocean Avenue Campus, 2015, PM Peak Hour in Appendix 4.3 show the estimates of new transit trips in 2006 and 2015 with the project.

Master Plan Buildout

In 2015 with the project, there would be 359 transit trips to the campus and 188 transit trips from the campus during the PM peak hour. The potential impacts to BART, MUNI Metro and MUNI lines are based on the breakdown of trips by general geographic area, as follows.

It is assumed that all trips to and from Downtown San Francisco would use either BART or MUNI Metro facilities. Sixty-five new trips would be to the downtown area. These trips would be distributed throughout the hour (not all classes start and finish at the same time). Given the high transit frequencies at the Balboa Park BART / MUNI Metro station, these trips would be accommodated using existing capacity. The three MUNI light rail lines in this area currently have daily load factors of between 62 percent and 83 percent, with an average of 70 percent, at the maximum load point on each route. Based on the allowable passengers for Light Rail Vehicles from the City Guidelines, 20 more passengers could travel on an average light rail vehicle before the vehicle approaches the minimal capacity standards. However, on the M line that currently operates with load factors of 83 percent, only about 3 new passengers could travel on the line before the minimal capacity standard is reached.

The trips to and from Golden Gate Park and the Presidio (Superdistrict 2) would be on MUNI Line 43. Some of the trips to the eastern areas of Superdistrict 3 would also be via this route. At the maximum load point (located mid-route), the maximum capacity standard would be reached when an additional 25

passengers catch the Route 43 buses. There would be an additional 58 trips to the Golden Gate Park and Presidio and 27 trips to the campus from these areas during the PM peak hour in 2015. However, the Main Campus is at the start/end of the route, not at the maximum load point. In addition, these trips would occur throughout the peak hour, and not all students catching Route 43 buses to/from the campus would stay on for the entire length of the route. For those reasons, the impact would be less than significant.

All trips to and from the southern areas of Superdistrict 3 and areas further south are assumed to be on BART services to the south. Due to the number of BART lines that serve the Balboa Park BART / MUNI Metro Station, it is not anticipated that there would be a significant impact on any one BART line, as people will catch the first train to arrive that serves their destination.

Students and staff wishing to access the Sunset district and western areas of Superdistrict 3 would use MUNI lines 29, 15 and 49 depending on the first bus to come that serves their destination. Currently these routes operate with load factors of 50 percent to 80 percent. There would be an additional 95 trips to these areas and nearly 50 trips from these areas to the campus under the 2015 project conditions. Since these transit trips would leave the campus at different intervals and two of the routes terminate near the campus, the additional loads on these routes generated by the proposed project are not anticipated to be significant.

In addition to the MUNI Line 43 (discussed above), trips to and from the east of the campus (in Superdistrict 3) would use Lines 36, 54 or 23. At present, these three routes have load factors of 30 percent to 73 percent\(^{23}\) with an average load factor of 52 percent. Under 2015 project conditions, there would be 38 trips from the campus to the eastern areas in Superdistrict 3 and an additional 22 trips from this area. It is not anticipated that the new trips to or from this area would result in a significant impact to these lines.

In conclusion, the additional transit trips generated by the Main Campus Master Plan would not cause a significant impact to transit. All routes that operate close to the campus are not operating above established capacity standards and the additional passengers can be accommodated by the existing services.

Near-Term Development

The traffic impacts of the proposed near-term projects (the Community Health & Wellness Center, Health Center, Child Development, practice field relocation and reservoir berm removal/wall construction) are reflected in the analysis of 2006/2007 conditions. As discussed above for Master Plan buildout, the project would not cause significant impact to transit in 2015. The additional ridership in 2006/2007

would be less than that forecasted for 2015. Therefore, the impacts of near-term development on transit would be less than significant.

Reservoir Configuration

If the MOU between CCSF and SFPUC were not approved and the Balboa Reservoir was not reconfigured, Master Plan development would occur within the southern reservoir only. The potential impacts to transit would be similar to those described for development on the reconfigured reservoir.

Mitigation

No mitigation is required.

Significance After Mitigation

Less than significant.

Traffic-3 Parking Impacts

Impact

Master Plan Buildout

The supply of parking spaces would increase from 2,244 spaces to 2,700 spaces by 2015, an increase of 456 off-street spaces. (This estimate does not include the western half of the reservoir, which still might be available for parking in the near term.) Most of the proposed parking changes would result in the relocation of existing parking facilities. In 2015, the demand for parking, based on the estimated campus population and assumptions about mode share, would increase to approximately 5,450 spaces. The parking demand would continue to exceed the off-street parking supply.

Parking intrusion into the adjacent residential neighborhoods is already prevalent; vacant parking on residential streets is generally occupied by CCSF-bound motorists as soon as it becomes available. Without an increase in parking on campus that correlates with the increase in drivers, the number of students parking in the local area could increase. A secondary issue associated with this shortfall is the possible short-term traffic congestion that could occur as people parking in the area “cruise” the area looking for an available parking space.

Parking deficits are social effects that do not necessarily constitute impacts on the physical environment as defined by CEQA. Under California Public Resources Code Section 21060.5, “environment” means “the physical conditions which exist within the area which will be affected by a proposed project, including land, air, water, minerals, flora, fauna, noise, and objects of historic or aesthetic significance.” Parking deficits may be associated with secondary physical environmental impacts that may include increased traffic congestion at intersections, air quality, or noise effects caused by congestion. In the
absence of related secondary physical environmental impacts, CEQA does not require environmental
documents to propose mitigation measures solely because a project would have parking shortfalls.
Moreover, in the experience of San Francisco transportation planners, the absence of a ready supply of
parking spaces combined with readily available alternatives to auto travel (e.g., frequent transit service,
taxi, bicycles or travel by foot) and relatively dense patterns of urban development induces drivers to seek
and find alternative parking facilities, as described above, shift to other modes of travel, or change their overall travel habits. Cars circling and looking for a parking space could cause temporary physical
impacts, but any secondary environmental impacts associated with a shortfall in parking in the vicinity of
the proposed project would likely be minor, and short term. Thus, a parking shortage for this project and
does not constitute an environmental impact even though it may represent an inconvenience to drivers
(and a nuisance to College neighbors). For these reasons, the shortfall in parking resulting from the
project would not in itself be considered a significant environmental effect. (Land use impacts related to
increased activity in the neighborhoods near CCSF are discussed in Section 4.1, Land Use and Planning.)

Near-Term Development

In 2006 with the project, there would be an additional demand of approximately 1,670 spaces. The
parking supply available in 2006 would include the North and South Reservoir lots and the spaces
created by the removal of the berm between the lots (1,815 spaces); the existing A, H and M lots (206
spaces); surface parking at the current sites of C and D lots (82 spaces); on-street parking on the entry
crescent and Cloud Circle (160 spaces); and the proposed parking for the Community Health & Wellness
Center, Health Center, and Child Development Center (about 80 spaces). These facilities would provide
about 2,340 spaces, or an increase of about 670 spaces over existing conditions. There would continue to
be a shortfall of parking, with the effects similar to those described for Master Plan buildout, above. For
the reasons noted, this shortfall would not be a significant environmental effect.

Reservoir Configuration

If the MOU between CCSF and SFPUC were not approved and the Balboa Reservoir was not
reconfigured, Master Plan development would occur within the southern reservoir only. It is assumed
that the proposed parking supply would be similar to that available with the proposed Master Plan
(although parking in the northern reservoir might also be available, at least in the short term).

Mitigation

No mitigation is required.

Significance After Mitigation

Less than significant. As noted previously in this section, CCSF proposes to implement TDM measures to
reduce vehicle trips to the campus; these measures would help to reduce the demand for parking.
Traffic-4 Pedestrian Impacts

Impact

Master Plan Buildout

Table 16, New Pedestrian Trips To and From Ocean Avenue Campus, 2006 and 2015, PM Peak Hour, in Appendix 4.3 illustrates the additional walking trips to campus in 2006 and 2015. The number of pedestrians at each of the intersections analyzed is expected to increase at the same proportion as the student and staff population. As all of the study intersections currently operate at LOS A, the increase in student and staff population would not result in any intersection deteriorating to an unacceptable LOS. For that reason, Master Plan buildout would not result in a significant impact on pedestrians.

If the Master Plan recommendation for a pedestrian signal at the crossing(s) on Phelan Avenue is implemented, pedestrian safety would be enhanced. In addition, the planned bicycle network changes to Phelan Avenue would result in a safer pedestrian environment because there would be one less travel lane. The removal of traffic from Cloud Circle (with the exception of ADA parking) would have a beneficial impact for pedestrians on campus, as it would result in a more pedestrian friendly environment, thus minimizing potential conflicts and improving the safety of the pedestrians on the campus.

Near-Term Development

The impacts to pedestrians caused by increased enrollment during the near term are addressed above as part of full buildout under the Master Plan. As shown, the impacts of Master Plan buildout on pedestrians would be less than significant. Therefore, the impacts of the near-term projects would also be less than significant. Due to the limited parking spaces provided in the immediate vicinity of the Community Health & Wellness Center, the majority of the auto trips would have to utilize the other parking facilities on campus. This situation would create additional pedestrian activity on the campus because pedestrians would need to access the Center from these sites. This increased activity would not be significant, however.

Reservoir Configuration

The potential impacts to pedestrians would be similar to those described for development on the reconfigured reservoir.

Mitigation

No mitigation is required.
Significance After Mitigation

Less than significant. As noted previously in this section, CCSF proposes to implement TDM measures to reduce vehicle trips to the campus; these measures would help to reduce pedestrian-vehicle conflicts.

Traffic-5 Bicycle Impacts

Impact

As previously stated, bicycling is not a prevalent transportation mode to or from the Main Campus. There are relatively few facilities that serve bicyclists, either on campus or in the greater area. With the exception of the planned Class II facilities along Phelan Avenue, bike lanes have not yet been developed as part of the San Francisco Bicycle Plan, while on-campus bicycling support facilities, such as safe and secure bicycle parking, are limited. As a result of the existing and projected future limited use of bicycles as a mode of transportation to the campus, no significant bicycle impacts are anticipated.

Mitigation

No mitigation is required. As noted previously in this section, CCSF proposes to implement TDM measures to reduce vehicle trips to the campus; these measures would help to enhance conditions for cyclists and reduce bicycle-vehicle conflicts.

Significance After Mitigation

Less than significant.

Traffic-6 Loading Impacts

Impact

Freight loading and service under the project conditions are expected to be similar to the existing freight loading and services (similar operating hours, number of vehicles, and location of operations). Therefore, there would be no freight loading and service impacts in the PM peak period as a result of the proposed project.

Currently, Science Circle is used as the primary curbside passenger loading/unloading area for the campus. With the project, it is expected that this area would remain the primary passenger loading/unloading area. No project-generated impacts are anticipated, as the condition would be similar to the existing situation.

Source: Personal communication between City College staff and DKS Associates.
Mitigation

No mitigation is required.

Significance After Mitigation

Less than significant.

Traffic-7 Construction Impacts

Impact

Master Plan Buildout

Construction vehicles and equipment would use local roadways to access construction zones on the campus. Trucks and equipment traffic could temporarily disrupt existing local traffic patterns during construction project. Construction traffic would include heavy equipment such as bulldozers, dump trucks, loaders, backhoes, and graders. Construction of retaining walls, embankments, and rail would also require cranes, concrete mixers, delivery trucks, compactors, and specialized track-laying equipment. Ballast would be hauled in from offsite. Workers driving to the construction site would also represent added traffic to the local and regional network. Truck movements would generally not occur during the AM or PM peak hour; in addition, construction workers would generally leave the site prior to the PM peak hour.

In addition to the general effects of construction traffic and staging on existing traffic operations, the existing Reservoir parking lot would need to be partially closed to construct the Reservoir parking structure.

According to the City’s significance criteria, these impacts would not be considered “significant” under CEQA. However, they could be considered a temporary nuisance and annoyance.

Near-Term Development

Parking for construction workers for the Community Health & Wellness Center would be provided on the site, probably between the building pad and Ocean Avenue. Traffic access for this parking would be from Ocean Avenue. It is expected that there would be 30 to 50 workers at the beginning of the project (Fall 2004); this number would increase to a maximum of up to 300 during internal finishing. Access to/from the construction site would not affect the PM peak hour since construction work is assumed to finish by 5:00 PM.

The removal of the berm between the reservoirs would require 75 trucks per day for a period of four months assuming a 40-hour work week. This schedule would translate to 150 truck trips to and from the reservoir area per day. The truck trips would access the campus via I-280, Ocean Avenue and Phelan
The trips would not be concentrated at any one time but instead dispersed throughout the day. Parking for these workers is assumed to be on site. CCSF is proposing a temporary haul route on the southern reservoir site for removal of the berm material. Trucks would turn right into the reservoir site from Ocean Avenue opposite Lee Avenue. The trucks would then head toward the western edge of the reservoirs, then over to Phelan Avenue where they would exit the site by turning right onto Phelan Avenue. Due to their limited number and distribution, these truck movements would not cause significant impacts to the roadway system. Similar to the construction of the Community Health & Wellness Center, the movements of the workers would not affect traffic during the PM peak hour.

Mitigation

No mitigation is required. However, CCSF plans to develop and implement a construction plan to address construction-related traffic and minimize the loss of parking spaces. The construction plan would address phasing, construction worker parking, truck routes, temporary signage, and availability of parking. CCSF would also be required to implement the construction-related noise and air quality measures identified elsewhere in this EIR.

Significance After Mitigation

Less than significant.

Traffic-8 Freeway Impacts

Impact

Table 17, Future Freeway Level of Service Analysis, in Appendix 4.3 indicates that there would be relatively few project-generated trips that would use the freeway segments within the study area (due to the number of students traveling to/from areas near the campus). As shown in the table, the Master Plan would not significantly affect the nearby freeway segments.

Mitigation

No mitigation is required.

Significance After Mitigation

Less than significant.
4.3 Transportation and Circulation

Traffic-9 Internal Circulation and Campus Access

Impact

As part of the Master Plan, it is recommended that Cloud Circle be closed to all vehicular traffic with the exception of ADA vehicles and service vehicles. This change would result in a safer pedestrian and bicycle environment. In addition, the flow of traffic on Phelan Avenue would be improved as one of the conflicting movements would be removed (cars traveling southbound on Phelan Avenue and turning left onto Cloud Circle).

Circulation through the lower campus would remain similar to the existing conditions, with the exception of the relocation of the driveway at Howth Street and Ocean Avenue. The new parking garage east of the stadium would have access from both Ocean Avenue and Havelock Street. It was assumed that most of the new trips accessing this garage would be from the Ocean Avenue entrance. The introduction of trips accessing the Community Health & Wellness Center and the new parking structure east of the stadium would not have a detrimental affect on the intersection of Ocean Avenue and Howth Street. The intersection would continue to operate at LOS A under all project conditions as well as the 2015 Cumulative plus Project scenario. It is possible that the number of northbound vehicles (from Howth Street onto the campus) would increase when the driveway is moved to the intersection. In addition, construction of the driveway and associated eastern campus road would create a possible “short-cut” through the campus that is likely to be used by students and staff attending the College.

Havelock Street, along the northern edge of the campus, is a narrow street with limited pedestrian facilities. The draft Master Plan indicates that about 2,300 vehicles travel on Havelock Street each day. The project includes construction of a parking garage in the eastern part of the campus, just south of Havelock Street. Although most vehicles would access the garage via the signalized Ocean Avenue entrance at Howth Street, some vehicles could use Havelock Street to access the parking garage, and others could use Havelock as an alternate entry into the campus (by existing I-280 at Monterey Boulevard). An increase in traffic on this road could create localized congestion and annoyance to campus neighbors (as discussed in Section 4.1, Land Use and Planning), and could lead to hazardous conditions for vehicles and pedestrians. The Master Plan states that its intent “is to maintain this secondary access to the lower campus without increasing the volume of traffic” and recommends that pedestrian connections be improved, but in the absence of more specific design information (or a commitment to provide sidewalks), the impact would be significant.

The Master Plan shows that the reservoir parking area (with 1,680 spaces) would be accessed through one driveway on Phelan Avenue (near Cloud Circle north) and two driveways on Lee Avenue, which would be extended north from Ocean Avenue into and through the reservoir. The extension of Lee Avenue from Ocean Avenue to the reservoir is a desired improvement but is not within the College’s jurisdiction. Therefore, the analysis in this EIR is based on the assumption that access to the reservoir parking would be provided from Phelan Avenue only. Use of one access to a parking area of that size would lead to
back-ups along Phelan Avenue (in part due to the limited number of cars that could use the entrance at any one time). In addition, conflicts between the northbound left turn into the reservoir parking and the southbound left turn onto Cloud Circle (even with limited access to Cloud Circle) would still occur. These impacts could interfere with the transportation system along the campus frontage and could contribute to additional traffic and pedestrian hazards, and thus would be significant.

Mitigation

Traffic-9a: CCSF shall work with the City to improve conditions along Havelock Street. There is room to create pedestrian facilities along the southern edge of the street, which is under the City’s jurisdiction.

Traffic-9b: CCSF shall design the eastern parking garage in such a way as to discourage access to the garage from the north. Possible measures include (but are not limited to) placing entrances and exits near the southern end of the garage only, and installing signage directing people to the Ocean/Howth entrance.

Traffic-9c: CCSF shall commit to implementation of the TDM program outlined in the Master Plan (to the extent feasible and in compliance with State law) in order to reduce the number of vehicles traveling to and from the Ocean Avenue Campus. The components of the TDM program are outlined below.

• Encourage the City and County of San Francisco to impose and enforce parking restrictions and permits in the adjacent neighborhood;

• Designate a Campus Transportation Coordinator to develop and implement the TDM program;

• Investigate subsidized or reduced cost transit passes (e.g., MUNI/BART Class Pass);

• Establish carpool match database for CCSF faculty, staff and students, and designate preferential parking spaces (closest to campus buildings) for carpool parking spaces;

• Consider vanpool or shuttle bus service from off-campus sites, including the Balboa Park BART Station and other CCSF campuses;

• Implement “guaranteed ride home” program for faculty or staff to utilize a taxi service, free of charge, in the event of emergencies, to encourage transit usage;

• Establish a car-sharing program and offer preferential parking for car share cars;
• Consider options for providing faculty housing on campus or in adjacent future developments;

• Provide additional services on campus (restaurants, banks, etc.);

• Provide a bicycle station or improved provisions for bicyclists on campus;

• Conduct annual monitoring of automobile trips to and from the campus to evaluate the effectiveness of the TDM programs;

• Increase parking fees to recover a portion of the cost of construction and maintenance of structured parking;

• Use parking revenue to fund implementation of TDM programs.

Traffic-9d: CCSF shall monitor the effectiveness of the TDM Program. The monitoring activities shall establish a baseline (pre-program level) for trips to and from the campus, and shall provide a quantitative measurement of future trips on at least a yearly basis. The monitoring activities may include, but would not be limited to, regular surveys and the use of trip counters at CCSF entrances. If the measures are found not to be effective (that is, if they do not meet at least the minimum level of trip reduction estimated), CCSF shall consider and implement corrective actions (to the extent feasible and consistent with State law).

Traffic-9e: In addition to the measures identified above, CCSF shall not expand its parking supply beyond existing levels without the implementation of all feasible TDM measures (see above) and an assessment of parking demand in order to minimize traffic related to parking lots and garages.

Traffic-9f: CCSF shall coordinate with the City and County of San Francisco to encourage use of public transit, improve pedestrian and bicycle access and reduce vehicle trips in the Ocean Avenue Campus area. In particular, CCSF shall adopt a resolution to work with the City toward reducing vehicle trips, employing relevant policies and objectives from the Balboa Park Station Area Plan (if approved).

Traffic-9g: CCSF shall work with the City to extend Lee Avenue from Ocean Avenue to the Balboa Reservoir along the western edge of the reservoir development. This extension would allow access to the proposed garages at two locations on the west side.

Traffic-9h: CCSF shall provide a second entrance/exit for the garage on Phelan Avenue to help minimize traffic congestion on Phelan Avenue and reduce potential conflicts with traffic using Cloud Circle.
Traffic-9i: CCSF shall design the access points for the parking garage in such a way as to promote efficient and non-conflicting traffic flows.

Significance After Mitigation

Construction of sidewalks on Havelock Street would help to minimize pedestrian-vehicle conflicts, but is within the jurisdiction of the City and County of San Francisco. Design measures for the parking garage would help to reduce use of Havelock Street to access the garage, and TDM measures would help to reduce future vehicle traffic on Havelock Street (and other campus access roads). However, implementation of all TDM measures cannot be guaranteed, and their actual effectiveness is not known at this time. The extension of Lee Avenue into the reservoir would help to reduce traffic on Phelan Avenue and would reduce potential congestion related to use of the reservoir parking, but is within the jurisdiction of the City and County of San Francisco. In addition, the use of Lee Avenue to access the reservoir could result in traffic impacts at the (new) intersection of Ocean and Lee Avenues, as well as potential growth inducement impacts (because the new road would provide access to possible future uses in the western half of the reservoir). A second access for the garage from Phelan Avenue and design measures would help to ensure that the garage is used efficiently. Due to the uncertainties related to most of these mitigation measures, the impacts would remain significant and unavoidable.

Traffic-10 Impacts of Citywide Master Plan Development

Impact

Mission Campus

The proposed project at the Mission Campus would generate 156 inbound and outbound vehicle trips during the weekday PM peak hour, and a maximum of 320 inbound and 320 outbound transit trips during the weekday PM peak hour. The transportation analysis concluded that:

- LOS at the two intersections along Mission Street would deteriorate from LOS B to LOS C under the existing plus project conditions with the other two intersections remaining at LOS B. Under the cumulative condition, the intersection at 22nd Street and Valencia Street would also deteriorate from LOS B to LOS C. Under existing conditions, all four intersections operate with less than 20 seconds average delay, with the highest delay at the 23rd Street and Mission Street intersection. The average delay under the existing and project conditions increases at the two intersections that deteriorate to LOS C to between 21.8 seconds and 25.4 seconds. Under cumulative conditions, average delay would increase at three of the intersections to more than 20 seconds but less than 32 seconds.

- Capacity utilization on the southbound transit lines would approach 93 percent and on the northbound lines it would approach 72 percent at the maximum load points. Under existing conditions, the transit lines operate between 55 percent capacity and 76 percent capacity at the maximum load points. These transit trips would not constitute significant transit impacts.

• The proposed project would have a conservative parking demand for 156 spaces, including 144 spaces for students and 12 spaces for faculty. There would be a shortfall of 106 spaces on the campus that would likely be accommodated within the local area. Within the study area, there are about 2,725 on-street and off-street parking spaces. During the weekday evening, these spaces are about 92 percent occupied meaning that the parking shortfall can be accommodated within the area. Once the spaces are used for the shortfall in the local area there would be approximately 94 percent parking capacity used in the local area. However, it should be noted that this parking analysis would represent a conservative analysis of the parking demand associated with the proposed project.

• Up to 1,600 new pedestrian trips would be generated during the weekday PM peak hour, and would be dispersed through the study area. The new pedestrian trips that would be generated by the proposed project could be accommodated within the existing pedestrian facilities and would not be considered significant impacts.

• Additional bicycle trips to and from the campus would be accommodated in the existing bicycle facilities. Currently, bicycle travel generally occurs without major impedances or safety problems and future trips generated by the proposed project would not cause significant impacts on the existing facilities.

Based on the information that is provided in the Mission Campus EIR Addendum, the Mission Campus would not result in significant transportation impacts.

Chinatown / North Beach Campus

The proposed project at the Chinatown / North Beach Campus would generate more than 850 person trips during the weekday PM peak hour, and approximately 85 vehicle trips during the PM peak. Approximately 430 transit trips would be generated from the site during the weekday PM peak period, with approx half of these inbound in the PM peak. The transportation analysis concluded that:

• None of the seven study intersections would experience deterioration in LOS. All intersections would operate at LOS B under existing plus project conditions. Only one of the seven intersections (Jackson Street / Columbus Avenue) would deteriorate under cumulative plus project conditions (LOS B to LOS C). With the addition of the project related trips at each of the study intersections, the average delay would result in little or no change in average vehicle delays.

• The project would create a total peak parking demand for about 220 parking spaces (200 for the students and 20 for the staff and faculty). As only 114 spaces are proposed there would be a shortfall of 106 spaces. Excess parking could be met by the planned parking facility as part of the approved St. Mary’s project and other demand would be met by on-street parking that is likely to be outside the study area.

• The proposed project would increase transit ridership by nearly 220 riders on the outbound screening. These new transit trips would not substantially increase the number of passengers on existing transit services. Capacity utilization varies from about 50 percent for the northeast line to 73 percent for the northwest and southwest lines. Overall there is a 70 percent capacity utilization. Consequently each of the lines that serve the Chinatown / North Beach Campus area have capacity for additional passengers. With the new transit riders from the proposed project, the overall MUNI system capacity utilization would increase to about 71 percent due to the proposed project. It is not anticipated that ridership on any one MUNI line would exceed the capacity. The additional transit trips would not cause significant impacts on the transit system.

26 Information from Chinatown / North Beach Campus EIR, EIP Associates, April 1998.
• Approximately 750 pedestrian trips would be generated in the PM peak hour. This estimate includes those people that walk between home or work and the campus, and those that walk between vehicles and transit to the campus. The additional pedestrian traffic would not cause any significant impacts at the crosswalks in the study area and on the other existing pedestrian facilities. All crosswalks would continue to operate at LOS B or better during the weekday PM peak hour.

• The proposed project would provide one off-street freight loading dock with enough room for two loading spaces. Access would be from Washington Street adjacent to the garage driveway. The proposed demand would easily be met within the proposed supply.

• It is expected that a number of sidewalks would be closed around the project site during the construction phase of the project, especially along Washington Street and Columbus Avenue. Adjacent curb lanes would be needed to accommodate these pedestrian movements or pedestrians would be relocated in the short term to the other side of the street. Temporary relocations of bus stops might also be required. These construction impacts would be short term and subject to approvals. Due to the short-term nature of the construction impacts, the impacts would not be significant.

Based on the information that is provided in the North Beach/Chinatown EIR Addendum, the campus would not result in significant transportation impacts.

Combined Impacts

Impacts at the Main Campus would be locally based, and would not combine with the impacts at other City College of San Francisco campuses.

Mitigation

No mitigation is required.

Significance After Mitigation

Less than significant.

Traffic-11 Cumulative Impacts

Impact

The 2015 cumulative condition assumes a one percent per year growth in background traffic and does not include the new trips generated by the CCSF campus. Project related trips were added to this background growth in order to determine the impact of the project. Cumulative analysis was not conducted beyond 2015 because the student population forecasts undertaken by the California Department of Finance are for 2015. The cumulative condition is only analyzed in terms of intersection

27 The San Francisco Travel model update was not completed in time for this study. Therefore, a one percent growth rate was assumed based on discussions with the City and County of San Francisco staff and the City’s Transportation Guidelines.
4.3 Transportation and Circulation

operations. The results of the cumulative analysis are shown in Table 4.3-4, Level of Service Summary (presented earlier in this section).

The table indicates that 11 of the 15 intersections would operate at LOS D or better under cumulative-plus-project conditions. Conditions at the other four intersections are as follows:

The signalized intersection of Phelan Avenue and Ocean Avenue currently operates at LOS C with an average delay of 22.3 seconds. Under the 2015 Cumulative plus Project scenario, the intersection would degrade to a LOS E with an average delay of 56.6 seconds. Under the City Guidelines this impact would be significant.

The unsignalized intersection of Howth Street and Geneva Avenue currently operates at LOS D with an average delay of 26.9 seconds. Under the 2015 Cumulative plus Project scenario, the intersection would degrade to LOS F with an average delay of 108.4 seconds (the V/C ratio would be 1.2). For the purposes of this EIR, the operational impact at an unsignalized intersection would be significant if one or more approaches operates at LOS E or F and the Caltrans peak-hour signal warrant is met. The westbound approach is the only approach at this intersection that would operate at LOS F. However, this intersection does not satisfy criteria for a Caltrans peak hour traffic signal warrant. Therefore, the impact at this intersection would be less than significant.

The signalized intersection of I-280 Northbound On and Off-ramps and Geneva Avenue currently operates at LOS D with an average delay of 35.6 seconds. Under the 2015 Cumulative plus Project scenario, the intersection would degrade to LOS E with an average delay of 73.6 seconds. Under the City Guidelines this impact would be significant.

The signalized intersection of I-280 Southbound On and Off-ramp and Geneva Avenue currently operates at LOS D with an average delay of 35.8 seconds. Under the 2015 Cumulative plus Project scenario, the intersection would degrade to LOS E with an average delay of 73.2 seconds. Under the City Guidelines this impact would be significant.

The unsignalized intersection of Phelan Avenue and Judson Avenue currently operates at LOS E with an average delay of 36.8 seconds (the V/C ratio is 0.7). Under the 2015 Cumulative plus Project scenario, the intersection would degrade to a LOS F with an average delay of 108.4 seconds (the V/C ratio is 1.0). The LOS of an unsignalized intersection is based on the movement with the greatest delay. The movement that causes the intersection of Phelan Avenue and Judson Avenue to operate at LOS E is the southbound approach on Phelan Avenue. The City and County of San Francisco has no set significance criteria for unsignalized intersections. As a general guideline in San Francisco, at unsignalized intersections that are not four-way-stop-controlled, the project would need to result in degradation of at least one approach to LOS E or F, all approaches would need to operate at a LOS E or F, and the intersection would need to meet a
Caltrans peak hour traffic signal warrant (Caltrans Traffic Manual, Chapter 9) for the impact to be significant. The southbound approach is the only approach at this intersection that would operate at LOS F. Therefore, not all approaches would operate at LOS E or F and the cumulative impact at this intersection would be less than significant. (Although the intersection of Phelan Avenue and Judson Avenue would warrant consideration of a traffic signal by 2006, this intersection also warrants a signal currently. The Master Plan would not cause the need for a signal and Master Plan traffic would not exceed the standard of significance. This intersection is not currently programmed for any capital improvements.\(^{28}\)

Mitigation

Traffic-11a: CCSF shall request that the City and County of San Francisco increase the cycle length at the intersection of Phelan Avenue and Ocean Avenue. This measure would be within the purview of the City and County of San Francisco. The intersection currently operates with a cycle length of 70 seconds.\(^{29}\) If the cycle length were increased to 80 seconds (similar to the other time periods) the intersection would operate at LOS D with an average delay of 44.7 seconds.

Traffic-11b: CCSF shall request that the City and County of San Francisco re-stripe the intersection of I-280 Northbound On and Off-ramps and Geneva Avenue to accommodate a through lane and a left turn lane and change the signal phasing to accommodate protected eastbound left turns. This measure would be within the purview of the City and County of San Francisco and Caltrans. With these improvements, the intersection would operate at LOS C with an average delay of 31.2 seconds.

Traffic-11c: CCSF shall request that the City and County of San Francisco re-stripe the westbound approach the intersection of I-280 southbound On and Off-ramp and Geneva Avenue to accommodate a through lane and a left turn lane, and change the signal phasing to accommodate protected eastbound left turns. This measure would be within the purview of the City and county of San Francisco and Caltrans. With these improvements, the intersection would operate at LOS C with an average delay of 26.2 seconds.

Significance After Mitigation

From a technical standpoint, the mitigation would reduce the impacts at all three intersections to less-than-significant levels. However, the mitigation is within the purview of other agencies, which have not

\(^{28}\) Source: Personal communication, Brian Dusseault, City of San Francisco, with DKS Associates.

\(^{29}\) Source: City of San Francisco Signal Timing Card, March 2003.
agreed at this point to implement the measures. In the absence of a commitment by the City and Caltrans to implement the measures, the impacts would remain significant.

G. CONCLUSION

Impacts related to increased traffic on Havelock Street would be reduced through the provision of sidewalks, incorporation of design features into the garage to discourage entry to the garage from the north, and implementation of TDM measures to reduce future vehicle traffic levels. However, there are uncertainties attached to these measures and their effectiveness, and the construction of sidewalks is under the jurisdiction of another agency. For those reasons, the impacts on Havelock Street would remain significant.

Impacts related to a single garage entrance on Phelan Avenue would be reduced through the extension of Lee Avenue to and through the reservoir, provision of a second garage entrance on Phelan Avenue, incorporation of design features to promote efficient use of the parking, and implementation of TDM measures to reduce future vehicle traffic levels. However, there are uncertainties attached to these measures and their effectiveness, and the extension of Lee Avenue is under the jurisdiction of another agency. For those reasons, the impacts related to garage access (and related congestion/hazards on Phelan Avenue) would remain significant.

Cumulative impacts to the three local intersections would be reduced to less-than-significant levels with the improvements identified in this section. However, the mitigation is within the purview of other agencies, which have not agreed at this point to implement the measures. In the absence of a commitment by the City and Caltrans to implement the measures, the impacts would remain significant.
This page left blank intentionally.
Figure 4.3-1, Study Area

Figure 4.3-2, Study Intersections

Figure 4.3-3, Existing Public Transportation Network in the Campus Vicinity